Reacciones de segundo orden

Las reacciones se producen a todo tipo de velocidades. La combustión del gas natural puede producirse casi instantáneamente, pero la oxidación del hierro puede tardar horas o incluso días.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o Falso: Las reacciones de segundo orden cuya velocidad depende del cuadrado de la concentración de un reactante sólo tienen ese único reactante

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuáles son las unidades de k (constante de velocidad) en una reacción de segundo orden?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o Falso: Podemos utilizar la ecuación de velocidad integrada de una reacción de 1 reactante para una reacción de 2 reactantes si [A]=[B]

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La gráfica de la variación de 1/[A] en el tiempo da la ecuación y=0,212x+20,3. ¿Cuál es la constante de velocidad?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La gráfica de la variación de 1/[A] en el tiempo da la ecuación y=2,56x10-3x+6,7. ¿Cuál es la constante de velocidad? ¿Cuál es la concentración de A a los 34 segundos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A los 7 segundos, la concentración de A es de 0,192 M. A los 47 segundos, la concentración de A es de 0,072 M. ¿Cuál es la constante de velocidad?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando se representa gráficamente el cambio en ln[A]/[B] a lo largo del tiempo, se obtiene la ecuación y=5,21x10-3x-4,89. ¿Cuál es la constante de velocidad?[A]0=0,42 M[B]0=0,56 M

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando se representa gráficamente el cambio en ln[A]/[B] a lo largo del tiempo, la ecuación es y=0,0451x-0,567. ¿Cuál es la constante de velocidad?[A]0=0,43 M

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o Falso: La fórmula de la semivida sólo puede utilizarse para las reacciones de segundo orden que dependen de un reactante.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A los 67 segundos, la concentración del reactivo A se reduce a la mitad, de 0,82 M a 0,41 M. ¿Cuál es la constante de velocidad?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o Falso: Las reacciones de segundo orden cuya velocidad depende del cuadrado de la concentración de un reactante sólo tienen ese único reactante

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuáles son las unidades de k (constante de velocidad) en una reacción de segundo orden?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o Falso: Podemos utilizar la ecuación de velocidad integrada de una reacción de 1 reactante para una reacción de 2 reactantes si [A]=[B]

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La gráfica de la variación de 1/[A] en el tiempo da la ecuación y=0,212x+20,3. ¿Cuál es la constante de velocidad?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La gráfica de la variación de 1/[A] en el tiempo da la ecuación y=2,56x10-3x+6,7. ¿Cuál es la constante de velocidad? ¿Cuál es la concentración de A a los 34 segundos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A los 7 segundos, la concentración de A es de 0,192 M. A los 47 segundos, la concentración de A es de 0,072 M. ¿Cuál es la constante de velocidad?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando se representa gráficamente el cambio en ln[A]/[B] a lo largo del tiempo, se obtiene la ecuación y=5,21x10-3x-4,89. ¿Cuál es la constante de velocidad?[A]0=0,42 M[B]0=0,56 M

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando se representa gráficamente el cambio en ln[A]/[B] a lo largo del tiempo, la ecuación es y=0,0451x-0,567. ¿Cuál es la constante de velocidad?[A]0=0,43 M

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Verdadero o Falso: La fórmula de la semivida sólo puede utilizarse para las reacciones de segundo orden que dependen de un reactante.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A los 67 segundos, la concentración del reactivo A se reduce a la mitad, de 0,82 M a 0,41 M. ¿Cuál es la constante de velocidad?

Mostrar respuesta

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Entonces, ¿por qué es así? Hay dos razones: la primera es la constante de velocidad (k). Que es una constante única que cambia en función del tipo de reacción y de la temperatura. La segunda es la concentración del reactivo o reactivos. La magnitud en la que la concentración afecta a la velocidad se denomina orden. En este artículo nos sumergiremos en las reacciones de segundo orden .

    • Este artículo trata sobre las reacciones de segundo orden
    • En primer lugar, veremos algunos ejemplos de reacciones de segundo orden
    • A continuación, identificaremos las unidades de la constante de velocidad
    • Luego deduciremos la ecuación de velocidad integrada para los dos tipos de reacciones de segundo orden
    • A continuación graficaremos estas ecuaciones y veremos cómo podemos utilizar las gráficas para calcular la constante de velocidad
    • Por último, deduciremos y utilizaremos la ecuación de semivida para las reacciones de segundo orden.

    Ejemplos y definición de reacciones de segundo orden

    Definamos primero qué es una reacción de segundo orden :

    Una reacción de segundo orden es una reacción cuya velocidad depende de uno de estos dos casos

    • la ley de velocidad depende de la concentración al cuadrado de un reactante o ,
    • la ley de velocidad depende de las concentraciones de dos reactantes diferentes.

    Las leyes de velocidad básicas para estos dos tipos de reacción son, respectivamente

    $$\text{rate}=k[A]^2$$

    $$\text{rate}=k[A][B]$$

    1. En el primer caso, la reacción global puede tener más de un reactante. Sin embargo, se ha comprobado experimentalmente que, en realidad, la velocidad de reacción sólo depende de la concentración de uno de los reactantes. Esto suele ocurrir cuando uno de los reactantes está en tal exceso que un cambio en su concentración es despreciable. He aquí algunos ejemplos de este primer tipo de reacción de segundo orden:

    $$\begin {align}&2NO_{2,(g)} \xrightarrow {k} 2NO_{(g)} + O_{2\\,(g)},\,;\text{rate}=k[NO_2]^2 \&2HI_{(g)} \xrightarrow {k} H_{2,(g)} + I_{2,(g)},&NO_{2,(g)} + CO_(g)} \xrightarrow {k} NO_(g)} + CO_{2,(g)},\,;\text{rate}=[NO_2]^2\end {align} $$

    Aunque pueda parecer que la ley de velocidad sigue los coeficientes de las reacciones unimoleculares (un reactante), en realidad la ley de velocidad se ha determinado experimentalmente en cada caso.

    2. En el segundo caso, la velocidad depende de dos reactantes. Los dos reactantes en sí son individualmente de primer orden (la velocidad depende de ese único reactante), pero la reacción global se considera de segundo orden. El orden total de una reacción es igual a la suma del orden de cada reactante.

    $$ \begin {align}&H^+_{(aq)} + OH^-_{(aq)} \xrightarrow {k} H_2O_(l)},\ {xarrow}=k[H^+][OH^-] \&2NO_{2\2,(g)} + F_{2\2,(g)} \xarrow {k} 2NO_2F \, \,;\text{rate}=k[NO_2][F_2] \&O_{3\\,(g)} + Cl_{(g)} \xrightarrow {k} O_{2\,(g)} + ClO_{(g)},\,;\text{rate}=k[O_3][Cl]\end {align} $$

    En este artículo trataremos ambos casos y veremos cómo la concentración del reactivo puede afectar a la velocidad.

    Ley de velocidad de segundo orden y estequiometría

    Aunque te hayas dado cuenta de que algunas de las leyes de velocidad siguen la estequiometría, en realidad las leyes de velocidad se determinan experimentalmente.

    La estequiometríaes la relación entre reactantes y productos en una reacción química.

    La estequiometría muestra la relación de cómo los reactantes se convertirán en productos en una ecuación química equilibrada. Por otro lado, la ley de velocidad muestra cómo afecta la concentración de reactantes a la velocidad. He aquí un ejemplo de cómo seguir la estequiometría no predice una ley de velocidad determinada experimentalmente:$$H_{2\,(g)} + Br_{2\,(g)} \xrightarrow {k} 2HBr_{(g)}\,\,\text{rate}=[H_2][Br_2]^{\frac{1}{2}}$$Aunque esta reacción parece de segundo orden al considerar la estequiometría, no es así. Las leyes de velocidad también pueden contener relaciones que la estequiometría no puede, como fracciones (mostradas arriba) y números negativos. Por tanto, cuando analices una reacción, ten cuidado al determinar el orden de reacción. Como verás más adelante, siempre determinaremos el orden basándonos en datos experimentales y no en la estequiometría.

    Unidades de reacción de segundo orden

    Para cada tipo de reacción ordenada (de orden cero, de primer orden, de segundo orden, etc...), la constante de velocidad, k. tendrá unidades dimensionales únicas en función del orden global de la reacción. Sin embargo, la velocidad de reacción propiamente dicha siempre tendrá las dimensiones de M/s (molaridad/segundo o moles/[segundo*litros]). Esto se debe a que la velocidad de una reacción se refiere simplemente al cambio de concentración en el tiempo. En el caso de las reacciones de segundo orden, las dimensiones de la constante de velocidad, k, son M-1 - s-1 o 1/[M - s]. Veamos por qué:

    En lo que sigue, pondremos entre corchetes, {...}, las unidades dimensionales. Así, para una reacción de segundo orden del primer tipo (la velocidad depende de la concentración al cuadrado de un reactivo), tendremos:

    $$rate\{ \frac{M}{s} \}=k{ ? \A]^2{ M^2}=k[A]^2{ ? \} \{ M^2 \}$$

    donde, el paréntesis, {?}, representa la dimensión desconocida de la constante de velocidad, k. Observando los dos paréntesis en el extremo derecho de la ecuación anterior, nos damos cuenta de que la dimensión de la constante de velocidad tiene que ser, {M-1 - s-1}, entonces:

    $$rate\{ \frac{M}{s} \}=k\{ \frac{1}{M*s} \A]^2{ M^2}=k[A]^2{ \frac{1}{M*s} \} \M^2 \}=k[A]^2\{ \frac{M}{s} \}$$

    Observa, ahora que dando a la constante de velocidad las dimensiones correctas, k{M-1 - s-1}, la fórmula de la ley de velocidad tiene las mismas dimensiones a ambos lados de la ecuación.

    Consideremos ahora una reacción de segundo orden del segundo tipo (la velocidad depende de las concentraciones de dos reactantes diferentes):

    $$velocidad{ {frac{M}{s}}=k{ ? \}[A]\{ M \}[B]\{ M \}=k[A][B]\{ ? \} \{ M^2 \}$$

    donde, el paréntesis, {?}, representa la dimensión desconocida de la constante de velocidad, k. De nuevo, observando los dos paréntesis del extremo derecho de la ecuación anterior nos damos cuenta de que la dimensión de la constante de velocidad tiene que ser, {M-1 - s-1}, luego:

    $$velocidad\ {\frac{M}{s}}=k\ {\frac{1}{M*s}} \}[A]\{ M\}[B]\{ M\}=k[A][B]\{ \frac{1}{M*s} \} \{ M \} \M=k[A][B]\ {frac{M}{s}}$$

    Observa, de nuevo, que dando a la constante de velocidad las dimensiones correctas, k{M-1 - s-1}, la fórmula de la ley de velocidad tiene las mismas dimensiones a ambos lados de la ecuación.

    La conclusión es básicamente que las unidades de la constante de velocidad, k, se ajustan para que la ley de velocidad esté siempre en dimensiones de molaridad por segundo, M/s.

    Fórmulas de reacción de segundo orden

    Si se ha determinado experimentalmente que una reacción dada es de segundo orden, podemos utilizar la ecuación de velocidad integrada para calcular la constante de velocidad basándonos en el cambio de concentración. La ecuación de velocidad integrada difiere según el tipo de reacción de segundo orden que estemos analizando. Ahora bien, esta derivación utiliza mucho cálculo, así que vamos a pasar directamente a los resultados (para los estudiantes interesados, consulta la sección "Profundización" más abajo).

    1. Esta ecuación se utiliza para reacciones de segundo orden dependientes de un reactante, del primer tipo :

    $$\frac{1}{[A]}=kt+\frac{1}{[A]_0}$$

    Donde [A] es la concentración del reactante A en un momento dado, y [A]0 es la concentración inicial del reactante A.

    Planteamos la ecuación de esta forma por dos motivos. La primera es que ahora está en forma lineal, y = mx+b, donde; y = 1/[A], la variable, x = t, la pendiente es, m = k, y la intersección y es, b = 1/[A0]. Basándonos en la ecuación lineal, sabemos que si se representa gráficamente la ecuación, k, será la pendiente. La segunda razón es que la ecuación debe tener la forma 1/[A], y no [A], porque la ecuación sólo es lineal de esta forma. Dentro de un momento verás que si graficamos el cambio de concentración en el tiempo, obtendremos una curva, no una recta.

    2. Pasemos ahora al segundo tipode reacción de segundo orden. Observa que si tras la determinación experimental de la ley de velocidad se comprueba que la reacción es de segundo orden y las concentraciones de A y B son iguales, utilizamos la misma ecuación que para el tipo 1. Si no son iguales, la ecuación se complica:

    $$ln\frac{[A]}{[B]}=k([B]_0-[A]_0)t+ln\frac{[A]_0}{[B]_0}$$

    donde, [A] y [B], son las concentraciones en el tiempo t, de A y B, respectivamente, y [A]0 y [B]0, son sus concentraciones iniciales. Lo más importante es que cuando se representa gráficamente esta ecuación, la pendiente es igual a k([B]0-[A]0). Además, tenemos que tomar el logaritmo natural de la concentración para obtener un resultado lineal.

    Para los que hayáis estudiado cálculo (¡o simplemente os intrigue!), vamos a repasar la derivación de la ley de velocidad para la reacción de segundo orden del primer tipo.

    En primer lugar, establecemos nuestra ecuación de velocidad de cambio : $$-\frac{d[A]}{dt}=k[A]^2$$ Esta expresión significa que a medida que la concentración del reactivo, A, disminuye con el tiempo, -d[A]/dt, es igual a la ley de velocidad dada, k[A]2.

    A continuación, reordenamos la ecuación para que ambos lados estén en forma diferencial, d(x). Esto se consigue multiplicando ambos lados por dt: $$dt*-\frac{d[A]}{dt}=dt*k[A]^2$$ Las dos diferenciales, dt, del lado izquierdo se anulan: $$-{d[A]}=dt*k[A]^2$$ Ahora multiplicamos ambos lados por -1, y colocamos la diferencial del lado derecho al final: $${d[A]}=-k[A]^2*dt$$ Luego, dividimos ambos lados por, [A]2, para obtener: $$\frac{d[A]}{[A]^2}=-kdt$$

    Ahora que hemos transformado la derivada en diferencial, podemos integrar. Como nos interesa el cambio en [A], a lo largo del tiempo, integramos la ley de tasas empezando por la expresión del lado izquierdo. Evaluamos la integral definida de, [A] a [A]0, seguida de la integración de la expresión del lado derecho, de t a 0: $$\int_ {[A]_0}^{[A]} \frac{d[A]}{[A]^2}=\int_{0}^{t} -kdt$$ Consideremos primero la integral del lado izquierdo. Para resolver esta integral, transformemos la variable [A] → x, entonces tenemos $$\int_ {[A]_0}^[A]} \frac{d[A]}{[A]^2}=\int_ {[A]_0}^{[A]} \frac{dx}{x^2}$$

    Ahora podemos evaluar la integral definida del lado derecho, en el límite superior, [A], e inferior, [A]0: $$\int_{[A]_0}^{[A]} \frac{dx}{x^2}=[\frac{-1}{x}]_{[A]_0}^[A]}=\frac{-1}{[A]}-\frac{(-1)}{[A]_0}=\frac{-1}{[A]}+\frac{1}{[A]_0}$$ Ahora, volvamos atrás y consideremos la integral del lado derecho de la ley de tasas:

    $$\int _{0}^{t} -kdt=-k\int _{0}^{t} dt$$

    Para resolver esta integral, transformemos la diferencial dt → dx, entonces tenemos $$-k\int _{0}^{t} dt=-k\int _{0}^{t} dx$$

    Evaluando ahora la integral definida del lado derecho, en el límite superior, t, e inferior, 0,obtenemos

    $$-k\int _{0}^{t} dx=-k[x]_{t}^{0}=-k*t-(-k*0)=-kt$$

    Igualando ambos lados de los resultados de la integración de la ley de tasas, obtenemos

    $$\frac{-1}{[A]}+\frac{1}{[A]_0}=-kt$$

    o bien

    Por último, reordenamos esto para obtener nuestra ecuación final: $$\frac{1}{[A]}=kt+\frac{1}{[A]_0}$$.

    Gráficos de la reacción de segundo orden

    Veamos primero los gráficos de los casos en los que la reacción sólo depende de una especie.

    Reacciones de segundo orden Concentración en el tiempo Reacción de segundo orden StudySmarterLa concentración de A con el tiempo disminuye de forma exponencial o "curva". StudySmarter Original.

    Si nos limitamos a representar gráficamente la concentración a lo largo del tiempo, obtenemos una curva como la que se muestra arriba. La gráfica sólo nos ayuda realmente si graficamos 1/[A] con el tiempo.

    Reacciones de segundo orden concentración inversa en el tiempo StudySmarterCuando se representa gráficamente la inversa de la concentración en el tiempo, vemos una relación lineal. StudySmarter Original.

    Como sugiere nuestra ecuación, la inversa de la concentración en el tiempo es lineal. Podemos utilizar la ecuación de la recta para calcular k y la concentración de A en un momento dado.

    Dada la ecuación de la recta, ¿cuál es la constante de velocidad (k)? ¿Cuál es la concentración de A a los 135 segundos? $$y=0,448+17,9$$

    Lo primero que tenemos que hacer es comparar esta ecuación con la ecuación de la tasa integrada:

    $$\begin {align}&y=0,448x+17,9 \&\frac{1}{[A]}=kt+\frac{1}{[A]_0}\end {align} $$

    Comparando las ecuaciones, vemos que la constante de velocidad es, k = 0,448 M-1s-1. Para obtener la concentración a los 135 segundos, sólo tenemos que introducir ese tiempo por t y resolver para [A].

    $$\begin {align}&\frac{1}{[A]}=kt+\frac{1}{[A]_0}\\&\frac{1}{[A]}=0,448\frac{1}{M*s}(135\,s)+17,9\,M^{-1} \frac{1}{[A]}=78,38\ M^{-1} \frac{1}{M*s}(135\,s)+17,9\,M^{-1} \frac{1}{[A]}=78,38\ M^{-1}&[A]=0,0128,M\final {align} $$

    También podemos resolver k utilizando la ecuación de la pendiente cuando sólo disponemos de datos brutos.

    A los 5 segundos, la concentración del reactivo A es de 0,35 M. A los 65 segundos, la concentración es de 0,15 M. ¿Cuál es la constante de velocidad?

    Para calcular k, primero tenemos que cambiar nuestra concentración de [A] a 1/[A]. A continuación, podemos introducir la ecuación de la pendiente. Debemos hacer este cambio ya que la ecuación sólo es lineal en esta forma.

    &\frac{1}{0,35,M}=2,86,M^{-1} \frac{1}{0,15,M}=6,67,M^{-1} \frac{1}{0,15,M}=6,67,M^{-1} &\text{puntos},(5,s,2,86,M^{-1})\frac{5,s,6,67,M^{-1}) &\text{pendiente}=\frac{y_2-y_1}{x_2-x_1} \\ xml-ph-0000@deepl.internal &\text{slope}=\frac{6.67\,M^{-1}-2.86\,M^{-1}}{65\,s-5\,s} \\ &\text{slope}=k=0,0635,M^{-1}s^{-1} \end {align} $$

    Pasemos ahora al caso 2: en el que la velocidad de reacción depende de dos reactantes A y B.

    Reacciones de segundo orden ln[A]/[B] en el tiempo StudySmarterCuando se representa gráficamente el cambio de ln[A]/[B] a lo largo del tiempo, vemos una relación lineal. StudySmarter Original

    Utilizar este gráfico es un poco más complicado que con el tipo 1, pero aún así podemos utilizar la ecuación de la recta para calcular k.

    Dada la ecuación de la gráfica, ¿cuál es la constante de velocidad? [A]0 es 0,31 M

    $$y=4.99x10^{-3}x-0.322$$

    Como antes, tenemos que comparar la ecuación de la tasa integrada con la ecuación lineal

    $$\begin {align}&y=4,99x10^{-3}x-0,322 $$\begin&ln\frac{[A]}{[B]}=k([B]_0-[A]_0)t+ln\frac{[A]_0}{[B]_0}$. \\&k([B]_0-[A]_0)=4,99x10^{-3}\,s^{-1}\end {align}$$

    También tenemos que utilizar la intersección y (ln[A]0/[B]0) para resolver [B]0, que luego podemos utilizar para resolver k

    $$\begin{align}&ln\frac{[A]_0}{[B_0}=-0,322&ln\frac{[A]_0}{[B_0}=0,725&[B]_0=ln\frac{[A]_0}{0,725} \\&[A]_0=0,31\,M \\\&[B]_0=0,428\,M \&k([B]_0-[A]_0)=4,99x10^{-3} s^{-1} \&k(0,428\,M-0,31\,M)=4,99x10^{-3}s^{-1} \&k=4,23x10^{-3}M^{-1}s^{-1}\end {align} $$

    También podemos utilizar la ecuación para calcular la concentración de uno de los reactantes; sin embargo, necesitamos conocer la concentración del otro reactante en ese momento.

    Fórmula de vida media para reacciones de segundo orden

    Existe una forma especial de la ecuación de velocidad integrada que podemos utilizar, denominada ecuación de semivida.

    La semivida de un reactivo es el tiempo que tarda en reducirse a la mitad su concentración. La ecuación básica es: $$[A]_{\frac{1}{2}}=\frac{1}{2}[A]_0$$.

    Eneste caso, sólo las reacciones de segundo orden que dependen de un reactante tienen una fórmula de semivida. Para las reacciones de segundo orden que dependen de dos reactantes, la ecuación no puede definirse fácilmente, ya que A y B son diferentes. Derivemos la fórmula:$$\frac{1}{[A]}=kt+\frac{1}{[A]_0}$$ xml-ph-0000@deepl.internal $$[A]=\frac{1}{2}[A]_0$$ xml-ph-0001@deepl.internal $$\frac{1}{\frac{1}{2}[A]_0}=kt_{\frac{1}{2}}+\frac{1}{[A]_0} $$ xml-ph-0000@deepl.internal $$\frac{2}{[A_0}=kt_{\frac{1}{2}}+\frac{1}{[A]_0}$$ xml-ph-0001@deepl.internal $$\frac{1}{[A]_0}=kt_{\frac{1}{2}}$$ xml-ph-0002@deepl.internal $$t_{\frac{1}{2}}=\frac{1}{k[A]_0}$$

    Ahora que tenemos nuestra fórmula, vamos a trabajar en un problema.

    La especie A tarda 46 segundos en descomponerse de 0,61 M a 0,305 M. ¿Cuál es k?

    Sólo tenemos que introducir nuestros valores y resolver k.

    $$t_{\frac{1}{2}}=\frac{1}{k[A]_0}$$

    $$46\,s=\frac{1}{k(0.61\,M)}$$ xml-ph-0000@deepl.internal $$k=\frac{1}{46\,s(0.61\,M)}$$ xml-ph-0001@deepl.internal $$k=0.0356\,\frac{1}{M*s}$$

    Sólo recuerda que sólo es aplicable para reacciones de segundo orden dependientes de una especie, no de dos.

    Reacciones de segundo orden - Puntos clave

    • Una reacción de segundo orden es una reacción cuya velocidad depende de la concentración al cuadrado de un reactante o de las concentraciones de dos reactantes. Las fórmulas básicas para estos dos tipos son, respectivamente:$$\text{rate}=k[A]^2$$ $$\text{rate}=k[A][B]$$
    • La constante de velocidad está en unidades de M-1s-1 (1/Ms)

    • La ecuación de velocidad integrada para el primer tipo de reacción de segundo orden es: $$\frac{1}{[A]}=kt+\frac{1}{[A]_0}$$

    • La ecuación de velocidad integrada para el segundo tipo de reacción de segundo orden es: $$ln\frac{[A]}{[B]}=k([B]_0-[A]_0)t+ln\frac{[A]_0}{[B]_0}$$.

    • En el primer caso, el cambio de la concentración inversa a lo largo del tiempo es lineal. En el segundo caso, la variación del logaritmo natural de [A]/[B] en el tiempo es lineal.

    • La semivida de un reactivo es el tiempo que tarda en reducirse a la mitad su concentración.

    • La fórmula de la semivida es \(t_{{frac{1}{2}}={{frac{1}{k[A]_0}\) . Esto sólo es aplicable al primer tipo de reacción de segundo orden

    Preguntas frecuentes sobre Reacciones de segundo orden
    ¿Qué es una reacción de segundo orden?
    Una reacción de segundo orden depende de la concentración de dos reactivos o del cuadrado de la concentración de un solo reactivo.
    ¿Cómo se determina la velocidad de una reacción de segundo orden?
    La velocidad se determina mediante la ecuación v = k[A][B] o v = k[A]^2, donde k es la constante de velocidad.
    ¿Cuál es la unidad de la constante de velocidad en una reacción de segundo orden?
    La unidad de la constante de velocidad (k) en una reacción de segundo orden es M^-1 s^-1.
    ¿Cómo afectan la temperatura y la concentración la velocidad de una reacción de segundo orden?
    Un aumento en la temperatura generalmente aumenta la velocidad. La velocidad también aumenta con el aumento de la concentración de reactivos.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    Verdadero o Falso: Las reacciones de segundo orden cuya velocidad depende del cuadrado de la concentración de un reactante sólo tienen ese único reactante

    ¿Cuáles son las unidades de k (constante de velocidad) en una reacción de segundo orden?

    Verdadero o Falso: Podemos utilizar la ecuación de velocidad integrada de una reacción de 1 reactante para una reacción de 2 reactantes si [A]=[B]

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Química

    • Tiempo de lectura de 17 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.