Saltar a un capítulo clave
Las cerillas de seguridad constan de dos partes:
- La primera es la cabeza de la cerilla, llena de un agente oxidante como el clorato de potasio.
- La segunda es la superficie rugosa del lateral de la caja de cerillas. Esta contiene fósforo rojo.
Cuando se golpea la cabeza de la cerilla contra esta superficie rugosa, se proporciona suficiente energía para convertir parte del fósforo rojo en vapor de fósforo blanco. El vapor de fósforo blanco se enciende espontáneamente en el aire. Este calor es suficiente para empezar a descomponer el clorato de potasio dentro de la cabeza de la cerilla, liberando el oxígeno que alimenta aún más la llama. La cerilla está ahora encendida.
Pero esta reacción solo se produce porque tú aportas energía; en este caso, a partir de la fricción causada por el roce de la cabeza de la cerilla contra la cara rugosa de la caja de cerillas. Aportar más energía significa que algunas de las partículas cumplen los requisitos de energía de activación de la reacción. Aquí es donde entra en juego el gráfico de distribución de Maxwell-Boltzmann.
La distribución de Maxwell-Boltzmann es una función de probabilidad que muestra la distribución de energía entre las partículas de un gas ideal.
Es una forma práctica de mostrar cómo las partículas de una sustancia varían en energía, incluyendo cuántas alcanzan o superan la energía de activación de una reacción.
- Este artículo trata sobre la distribución de Maxwell-Boltzmann en química.
- Comenzaremos aprendiendo qué son las funciones de distribución.
- A continuación, veremos qué aportaciones hicieron a la ciencia Maxwell y Boltxmann.
- Posteriormente, analizaremos un gráfico de distribución Maxwell-Boltzmann.
- Continuaremos el aprendizaje estudiando cuáles son los puntos importantes de este gráfico.
- Para terminar, exploraremos los factores que afectan a las distribuciones de Maxwell-Boltzmann.
Funciones de distribución
Estudiemos el concepto de función de distribución, para conocer cómo Maxwell y Boltzmann desarrollaron su propia función:
Una función de distribución es una función matemática estadística que muestra la probabilidad de que el sistema tome un determinado valor o conjunto de valores.
Esto significa que una función de distribución será más grande para condiciones más probables, y más pequeña para condiciones menos probables.
Por ejemplo, el valor de la función de distribución del color de los ojos a nivel mundial debe ser mayor para personas con ojos oscuros que para personas con ojos violeta.
Como hemos mencionado anteriormente, la distribución de Maxwell-Boltzmann es una función de probabilidad que muestra la distribución de energía entre las partículas de un gas ideal. (Lee Cinética química, para más información sobre este tema). En pocas palabras, un gráfico de distribución de Maxwell-Boltzmann muestra cómo varía la energía de las partículas de gas dentro de un sistema. Si no es totalmente claro aún, no te preocupes: ahora lo repasaremos.
Observa que aquí utilizamos la palabra “partículas”. Esto se debe a que la distribución de Maxwell-Boltzmann se aplica a todo tipo de especies gaseosas: desde átomos, a iones y moléculas.
Un gas ideal es un gas hipotético formado por partículas que no interactúan.
Aunque rara vez nos encontramos con gases ideales, sigue siendo útil imaginar su comportamiento mediante una curva de Maxwell-Boltzmann, porque podemos aplicar estas conclusiones a cualquier gas o solución.
Aportaciones de Maxwell y Boltzmann
El físico escocés James Maxwell, y el físico austríaco Ludwig Boltzmann aportaron conjuntamente a la teoría cinética de los gases con su función de distribución. La tabla que se muestra a continuación resume las aportaciones de cada científico al desarrollo de la distribución de Maxwell-Boltzmann:
Científico | Año | Contribución |
James Maxwell | 1860 | Maxwell obtuvo una ecuación matemática usando teoría cinética para encontrar las velocidades típicas de los átomos en un cierto volumen de gas a cualquier temperatura. Sin embargo, no hizo ninguna afirmación con respecto a la aplicabilidad de la ley para líquidos o sólidos. |
Ludwig Boltzmann | 1868 | Boltzmann publicó una explicación más convincente para la fórmula de Maxwell, analizando el comportamiento de un gas a medida que aumenta su altitud, mostrando que la ecuación de Maxwell predecía correctamente como cambiaba el número de átomos o moléculas con una energía particular. |
Ludwig Boltzmann | 1877 | Boltzmann derivó la distribución nuevamente a partir del estudio de la estadística termodinámica. |
Gráfico de distribución de Maxwell-Boltzmann: número de partículas en función de la energía de partícula o energía molecular
La Figura 1 muestra un ejemplo típico de un gráfico de distribución Maxwell-Boltzmann.
Fig. 1: Una gráfica de distribución de Maxwell-Boltzmann.
En el eje X tenemos la energía y en el eje Y el número de partículas.
En algunas ocasiones, puedes encontrar otros valores representados en los ejes. Por ejemplo, la energía podría sustituirse por la velocidad. Sin embargo, la velocidad es solo una medida de la energía cinética. En este caso, son lo suficientemente similares como para que podamos intercambiar una por otra. Las partículas con gran cantidad de energía se mueven a gran velocidad, así de sencillo.
Del mismo modo, en algunos gráficos, el eje Y muestra la probabilidad de que una partícula de gas tenga una energía determinada. Sin embargo, podemos generalizarlo al número de partículas con cada valor de energía. Por ejemplo, si tuviéramos 100 partículas de gas y la probabilidad de que tuvieran una determinada energía fuera de 0,05, podríamos esperar encontrar 5 partículas con esa energía.
Energía de partícula o energía molecular
Las partículas o moléculas no tienen una cantidad fija de energía. En cambio, sus niveles de energía cambian constantemente, a medida que se mueven aleatoriamente y chocan entre sí. Una distribución de Maxwell-Boltzmann simplemente nos muestra las diferentes energías que podríamos esperar ver en un momento dado. Esto se representa en el eje X de una gráfica de distribución de Maxwell-Boltzmann.
Número de partículas
El eje Y muestra el número de partículas con cada cantidad particular de energía; un valor más alto significa que más partículas tienen esa energía. Si sumas el número de partículas con cada valor de energía, obtendrás el número total de partículas. Esto es igual al área bajo el gráfico.
Observando el gráfico, podrás ver lo siguiente:
Ninguna partícula tiene energía negativa o energía cero: esto se muestra en el límite izquierdo de la curva, que pasa por el origen.
Unas pocas partículas tienen una cantidad muy grande de energía: mostrada por la larga cola derecha de la curva.
De hecho, no existe un límite superior para la energía que puede tener una partícula: la curva se extiende indefinidamente.
La mayoría de las partículas tienen una cantidad intermedia de energía: mostrada por el gran pico en el centro de la curva.
Fig. 2: Las diferentes energías de las partículas en un gráfico de distribución de Maxwell-Boltzmann.
Puntos importantes en el gráfico: energía más probable, energía media, y energía de activación
Volvamos a ver nuestro gráfico. Esta vez, vamos a marcar ciertos puntos en él.
Fig. 3: Puntos importantes de un gráfico de distribución de Maxwell-Boltzmann. Energía más probable, energía media, y energía de activación.
Energía más probable
El punto más alto del pico del gráfico representa la energía más probable de las partículas. De todos los diferentes valores de energía presentes, el mayor número de partículas tiene esta energía en particular.
Energía media
La línea marcada a la derecha de la energía más probable muestra la energía media de las partículas. Para ser más precisos: se trata del valor energético medio. Exactamente, la mitad de las partículas tienen más energía que esta, mientras que exactamente la mitad de las partículas tienen menos energía que esta.
Energía de activación
En el lado derecho del gráfico se encuentra la energía de activación.
La energía de activación es la cantidad mínima de energía necesaria para iniciar una reacción química. Toma el símbolo Ea.
Todas las partículas situadas a la derecha de este punto cumplen los requisitos de energía de activación de esta reacción concreta. Esto significa que podrían reaccionar potencialmente. Todas las partículas a la izquierda de este punto no cumplen la energía de activación: no tienen suficiente energía para reaccionar.
Por eso las cerillas son perfectamente seguras si se dejan solas. Las partículas no tienen suficiente energía para cumplir los requisitos de energía de activación necesarios para empezar una reacción.
Factores que afectan a las distribuciones de Maxwell-Boltzmann
Ahora que sabemos qué son los gráficos de la distribución Maxwell-Boltzmann, podemos estudiar los factores que los afectan. Estos incluyen:
La temperatura.
La presencia de un catalizador.
Podemos aplicar esto a la velocidad de reacción.
Temperatura
En primer lugar, veamos el efecto de calentar un sistema. Cuando calentamos partículas, les suministramos energía. Esto significa que:
Las partículas tienen más energía, en general, por lo que un mayor número de partículas alcanza o supera la energía de activación.
Las partículas también tienen más energía cinética: en promedio, se mueven más rápido y hay más colisiones por segundo.
Si se calienta un sistema gaseoso, hay más colisiones por segundo y, en promedio, más partículas que colisionan alcanzan la energía de activación. Esto significa que la velocidad de reacción aumenta.
Veamos el efecto de esto, a través de un gráfico de Maxwell-Boltzmann.
Fig. 4: El efecto del aumento de la temperatura en un gráfico de distribución de Maxwell-Boltzmann.
Observa que la punta del pico, que muestra la energía más probable, se aplana y se desplaza hacia la derecha: la energía más probable de las partículas ha aumentado. También puedes ver que ahora hay más partículas que alcanzan la energía de activación; esto contribuye a un aumento de la velocidad de reacción (como hemos explorado anteriormente).
Así es como encendemos las cerillas: al frotarlas contra la cara rugosa de la caja de cerillas se produce una fricción que proporciona energía a las partículas de la cabeza de la cerilla. Entonces, un número significativo de ellas tiene suficiente energía para reaccionar; es decir, cumplen los requisitos de energía de activación de la reacción.
Si disminuimos la temperatura, ocurre lo contrario: el pico de la gráfica se desplaza hacia arriba y hacia la izquierda, y menos partículas alcanzan ahora la energía de activación. Esto disminuye la velocidad de reacción. Veamos:
Fig. 5: Efecto de la disminución de la temperatura en un gráfico de distribución Maxwell-Boltzmann.
Presencia de un catalizador
Añadir un catalizador no cambia la energía de ninguna de las partículas; en cambio, reduce la energía de activación de la reacción. Esto significa que ahora un mayor número de partículas alcanza o supera la energía de activación. Esto, a su vez, aumenta la velocidad de reacción.
Fig. 6: Efecto de la adición de un catalizador en un gráfico de distribución de Maxwell-Boltzmann.
Veamos una serie de preguntas muy importantes para aclarar algunos conceptos:
- ¿Cómo afecta la concentración a un gráfico de distribución de Maxwell-Boltzmann?
- Bien, la concentración es simplemente una medida del número de partículas en un volumen determinado. Para aumentar la concentración, podemos disminuir el volumen de un sistema. El número total de partículas sigue siendo el mismo, solo que se apiñan en un espacio más pequeño.
- Verás que no hemos hecho nada para cambiar la energía de las partículas. Esto significa que la distribución de Maxwell-Boltzmann permanece exactamente igual. La concentración no tiene ningún efecto sobre una distribución de Maxwell-Boltzmann.
- ¿Qué pasa si aumentamos la concentración manteniendo el mismo volumen, pero aumentando el número de partículas en el sistema?
- Esto es más fácil de entender si cambiamos el número de partículas en el eje Y por la probabilidad. Como no hemos hecho nada para cambiar su energía, la probabilidad de que cada partícula tenga una energía específica se mantiene igual, por lo que la gráfica no cambia.
- Pero también debes saber que el aumento de la concentración de una especie aumenta la velocidad de reacción.
- ¿Cómo funciona esto, si la concentración no afecta a la distribución de Maxwell-Boltzmann?
- Recuerda que la concentración es una medida del número de partículas en un volumen determinado. Un sistema más concentrado tiene el mismo número de partículas, pero en un recipiente más pequeño. En promedio, las partículas están más juntas y viajan menos entre colisiones. Esto significa que hay más colisiones por segundo y, por tanto, una mayor velocidad de reacción.
Si has llegado hasta aquí, ya conoces los conceptos más importantes relacionados con la distribución de Maxwell-Bo
Distribución de Maxwell-Boltzmann - Puntos clave
- La distribución de Maxwell-Boltzmann es una función de probabilidad que muestra la distribución de energía entre las partículas de un gas ideal. Encontrarás el número de partículas en el eje Y, y la energía en el eje X.
- Los gráficos de la distribución de Maxwell-Boltzmann suelen mostrar la energía más probable, la energía media y la energía de activación.
- Ninguna partícula tiene energía cero. Unas pocas partículas tienen una cantidad muy grande de energía. Sin embargo, la mayoría de las partículas tienen una cantidad intermedia de energía.
- En un gráfico de Maxwell-Boltzmann, la energía aumenta de izquierda a derecha, por lo que las partículas de la derecha tienen más energía que las de la izquierda.
- El aumento de la temperatura desplaza el pico de la distribución Maxwell-Boltzmann hacia la derecha y aumenta el número de partículas que alcanzan o superan la energía de activación. Esto aumenta la velocidad de reacción.
- La adición de un catalizador reduce la energía de activación y aumenta el número de partículas que alcanzan o superan la energía de activación. Esto aumenta la velocidad de reacción.
Aprende más rápido con las 11 tarjetas sobre Distribución de Maxwell-Boltzmann
Regístrate gratis para acceder a todas nuestras tarjetas.
Preguntas frecuentes sobre Distribución de Maxwell-Boltzmann
¿Qué afirma la ley de distribución de Boltzmann?
La ley de distribución de Boltzmann afirma que la probabilidad de encontrar una molécula en un estado de energía particular varía exponencialmente en función de la energía dividida por kbT.
¿Qué es la distribución de la energía entre las moléculas?
La distribución de la energía entre las moléculas es una gráfica que muestra la cantidad de moléculas en función de la energía que tengan.
Observando el gráfico de distribución, podemos ver lo siguiente:
Ninguna partícula tiene energía negativa o energía cero; lo que se muestra en el límite izquierdo de la curva, que pasa por el origen.
Unas pocas partículas tienen una cantidad muy grande de energía, mostrada por la larga cola derecha de la curva.
De hecho, no existe un límite superior para la energía que puede tener una partícula: la curva se extiende indefinidamente.
La mayoría de las partículas tienen una cantidad intermedia de energía, mostrada por el gran pico en el centro de la curva.
¿Cómo se llama el modelo que introdujo Boltzmann y de qué trata?
El modelo que introdujo Boltzmann se llama modelo de Maxwell-Boltzmann.
En este modelo, todas las partículas son indistinguibles entre sí y se distribuyen en diferentes niveles de energía. Este modelo representa el comportamiento de la mayoría de los gases a bajas presiones.
¿Qué es la velocidad cuadrática media y para qué se usa?
La velocidad cuadrática media es la raiz cuadrada del cuadrado de la velocidad media.
Se usa la velocidad cuadrática para que esta sea independiente del signo, porque la suma neta de las velocidades en todas las direcciones para un gas es igual a cero.
¿Qué es gas ideal de Maxwell Boltzmann?
Un gas ideal de Maxwell-Boltzmann es un gas en el cual sus partículas se mueven de forma libre dentro de un recipiente y la única interacción entre ellas son colisiones en las que intercambian energía y el momento entre ellas o con el entorno.
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más