La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
¿Te has preguntado alguna vez a qué velocidad se mueven las moléculas de los gases? Pues, depende de muchos factores, como su masa y la temperatura. Pero, como ejemplo, los científicos estiman que las moléculas de oxígeno en el aire se desplazan a temperatura ambiente a más de 400 ms-1.Ahora, piensa en cuántas moléculas de gas puede haber en el aire.…
Explore our app and discover over 50 million learning materials for free.
Guarda la explicación ya y léela cuando tengas tiempo.
GuardarLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmelden¿Te has preguntado alguna vez a qué velocidad se mueven las moléculas de los gases? Pues, depende de muchos factores, como su masa y la temperatura. Pero, como ejemplo, los científicos estiman que las moléculas de oxígeno en el aire se desplazan a temperatura ambiente a más de 400 ms-1.
Ahora, piensa en cuántas moléculas de gas puede haber en el aire. A temperatura y presión ambiente, un mol de cualquier gas ocupa aproximadamente 24 L; es decir, 6,022 x 1023 moléculas en un área de solo 60 x 20 x 20 cm. Si juntamos las dos cosas, obtenemos un gran número de moléculas que se mueven con extrema rapidez en un área relativamente pequeña. A partir de esto, podemos predecir que hay muchas colisiones entre las moléculas cada segundo.
Pero espera, el aire está lleno de moléculas de nitrógeno y oxígeno. Pueden reaccionar para formar los dañinos óxidos nitrosos. Entonces, ¿qué pasa si las moléculas chocan?, ¿reaccionarán? Y, si lo hacen, ¿por qué el aire que nos rodea no está lleno de óxidos nitrosos dañinos?
Antes de seguir pensando en ello, tenemos que analizar la teoría de las colisiones.
La teoría de colisiones es una explicación de las velocidades de muchas reacciones. Propone dos idead clave: las moléculas deben colisionar con la orientación correcta y con la energía suficiente para que se produzca una reacción.
La teoría de la colisión nos permite entender por qué que podemos vivir en una atmósfera llena de moléculas de nitrógeno y oxígeno, sin preocuparnos por el peligro de los óxidos nitrosos. También, nos ayuda a analizar la velocidad de las reacciones y a determinar la mejor manera de optimizar un proceso químico.
La teoría de las colisiones tiene dos principios subyacentes:
Empecemos por la orientación.
Para que se produzca una colisión, las moléculas deben encontrarse primero con la orientación correcta.
Tomemos como ejemplo la reacción entre el bromuro de hidrógeno y el eteno.
Así se forma el bromoetano:
Sin embargo, la orientación correcta no es el final de la historia. Para reaccionar, las moléculas que colisionan también necesitan la energía adecuada. Esto se debe a que todas las reacciones implican (en primer lugar) la ruptura de enlaces, que es un proceso endotérmico —es decir, que requiere energía—. La cantidad de energía necesaria varía en función de las especies implicadas y de la propia reacción, y se conoce como energía de activación.
La energía de activación es la cantidad mínima de energía necesaria para iniciar una reacción química.
Se denota con el símbolo Ea y se suele medir en
La teoría de las colisiones nos dice que, aunque las moléculas choquen con la orientación perfecta, solo reaccionarán si alcanzan o superan la energía de activación. Si no tienen suficiente energía, simplemente rebotarán unas contra otras. Podemos ver la energía de activación de una reacción mediante los diagramas de entalpía, que también se conocen como perfiles energéticos. Este es un ejemplo de perfil energético para una reacción exotérmica:
Observa lo siguiente:
Como se trata de una reacción exotérmica, los productos tienen menos energía que los reactantes. En general, la reacción libera energía. En cambio, en las reacciones endotérmicas, los productos tienen más energía que los reactantes y, en general, la reacción absorbe energía. Sin embargo, en las reacciones endotérmicas seguimos encontrando la barrera energética, como se muestra a continuación:
Observa sus similitudes con una reacción exotérmica:
En el caso de una reacción endotérmica, la única diferencia es que los productos tienen un nivel de energía más alto que los reactantes. En general, la reacción absorbe energía; sin embargo, seguimos necesitando energía de activación para que la reacción se inicie.
Puedes profundizar en los perfiles energéticos, incluyendo los estados de transición, en Cinética Química.
Por lo tanto, en la química, hay dos tipos de choque: el choque efectivo y el choque no efectivo. Para saber si es efectivo o no, podemos pensar en todo el proceso de colisión y reacción como un gran diagrama de flujo. Tomemos dos moléculas:
Si la respuesta es "no" en cualquiera de las etapas, se trata de un choque no efectivo; si la respuesta es "sí" a todos, estamos frente a un choque efectivo.
La teoría del complejo activado hipotetiza que se forma un complejo molecular: una sustancia inestable energéticamente excitada con la energía de activación tras un choque efectivo. En esta etapa de transición, se forman y se rompen los enlaces de forma simultánea.
Volvamos al problema del principio del artículo. Aunque puede haber muchas colisiones entre las moléculas de oxígeno y nitrógeno en el aire cada segundo, apenas hay reacciones entre ellas. La teoría de las colisiones nos da la razón: en este caso, casi ninguna de las moléculas tiene energía suficiente para reaccionar. Una reacción entre el nitrógeno y el oxígeno requeriría, en primer lugar romper los fuertes enlaces N≡N y O=O dentro de las moléculas. Por lo tanto, siguiendo la teoría del complejo activado, tendría que pasar por una etapa de transición formando una sustancia intermedia entre el nitrógeno y el oxígeno en el cual se va formando y rompiendo los enlaces, simultáneamente; esto requiere mucha energía. En la mayoría de los casos, las moléculas de nitrógeno y oxígeno no tienen suficiente energía para superar la barrera de energía de activación, por lo que no hay reacción.
Ahora sabemos que, para reaccionar, las moléculas deben colisionar con la orientación correcta y la energía suficiente para que sea un choque efectivo. Cuantas más colisiones efectivas tengamos por segundo, mayor será la velocidad de reacción. Es importante recordar que solo una pequeña proporción de colisiones da lugar a una reacción. Por eso, la mayoría de las colisiones son no efectivas, ya que están mal orientadas o no tienen suficiente energía.
¿Cómo podemos utilizar la teoría de colisiones para aumentar la velocidad de una reacción? Bueno, no podemos cambiar la orientación de las moléculas cuando chocan. Sin embargo, podemos influir en la frecuencia con la que chocan y en sus necesidades energéticas generales, de las siguientes maneras:
Si quieres saber más sobre cómo estos factores modifican la velocidad de reacción, consulta Factores que afectan a la velocidad de reacción.
La teoría de las colisiones puede ayudar a explicar el funcionamiento de las enzimas. Las enzimas son catalizadores biológicos, lo que significa que aumentan la velocidad de reacción. Hay algunas hipótesis diferentes que explican cómo:
Un choque efectivo es aquel en el cual las moléculas colisionan con la orientación correcta y con la energía suficiente para que se produzca una reacción.
La teoría de las colisiones y la teoría del complejo activado establecen que las moléculas deben colisionar con la orientación correcta y con la energía suficiente para formar un complejo activo inestable, en una etapa de transición, para que se produzca una reacción.
La teoría de colisiones es importante porque nos permite comprender cómo podemos influir en la velocidad de reacción: cambiando la frecuencia de colisión de las moléculas y su energía media, podemos aumentar la velocidad de una reacción.
Los factores que afectan a la velocidad de una reacción son: la temperatura, la presión, la concentración, la superficie de las partículas y la presencia de un catalizador.
de los usuarios no aprueban el cuestionario de Teoría de las colisiones... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
How would you like to learn this content?
Free quimica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.
Guarda las explicaciones en tu espacio personalizado y accede a ellas en cualquier momento y lugar.
Regístrate con email Regístrate con AppleAl registrarte aceptas los Términos y condiciones y la Política de privacidad de StudySmarter.
¿Ya tienes una cuenta? Iniciar sesión