Prueba de Chi-Cuadrado

La prueba Chi-cuadrado se utiliza para comparar lo que has medido (observado) con lo que se puede prever (esperado).

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Establecemos una hipótesis para la característica investigada y luego la convertimos en una hipótesis nula. La hipótesis nula afirma que no existe relación entre los dos parámetros de la población. La utilizamos porque nos ayuda a ver si nuestra hipótesis tiene validez. Es imposible demostrar algo con absoluta certeza. Sin embargo, podemos refutar una hipótesis nula, lo que nos permite aceptar que nuestra hipótesis es válida, y para ello utilizamos "niveles de confianza" y "valores críticos".

    Hipótesisnula: No hay diferencias significativas entre las poblaciones especificadas , y cualquier diferencia observada se debe a un error de muestreo o experimental.

    Imagina que estás investigando el tamaño de los árboles de un bosque y observas diferencias a medida que te desplazas desde el exterior del bosque hacia el centro. Has visto que los árboles son más densos cerca del centro. Quieres saber si las variaciones en el número de árboles por 5m^2 son significativas o aleatorias. Has llevado a cabo una investigación para saber si la variación es estadísticamente significativa. A continuación se presentan las hipótesis que utilizarías:- Hipótesis: La densidad de árboles por 5m^2 aumenta a medida que te diriges hacia el centro del bosque.- Hipótesis nula: no hay variación significativa de la densidad de árboles en el bosque.

    La diferencia entre los resultados esperados y los observados en los experimentos puede describirse de dos formas:

    • Estadísticamente significativa
    • Estadísticamente insignificantes (ocurridos por casualidad)

    Cuando los resultados son significativos, esto sugiere que está ocurriendo algo que no se había tenido en cuenta.

    La prueba de chi-cuadrado es una prueba estadística que se suele utilizar para las hipótesis biológicas con el fin de determinar si los resultados son estadísticamente significativos.

    También podemos definir nuestra hipótesis como de una cola o de dos colas. Las hipótesis de una cola se basan en hipótesis unidireccionales y las de dos colas en hipótesis bidireccionales.

    En términos de nuestras hipótesis anteriores, esto sería

    • Una cola: La densidad de árboles por 5m^2 aumenta hacia el centro del bosque.
    • De dos colas: La densidad de árboles por 5 m^2 cambia hacia el centro del bosque.

    Prueba Chi-Cuadrado, Hipótesis de una cola y de dos colas, StudySmarterFig. 1 - Hipótesis de una cola y de dos colas

    Las pruebas de Chi-cuadrado sólo deben hacerse con datos categóricos y si se cumplen unos criterios específicos.

    Datoscategóricos: valores que pueden clasificarse en grupos o categorías. Pueden dividirse a su vez en nominales (valores que puedes contar pero no ordenar, por ejemplo, el color de los ojos) y ordinales (valores que puedes contar y ordenar, por ejemplo, los números de las casas).

    Esto es diferente de la prueba de contingencia chi-cuadrado, que comprueba la asociación entre dos variables categóricas.

    ¿Cuáles son los criterios para realizar una prueba de chi-cuadrado?

    • El tamaño de la muestra tiene que ser grande (>20).
    • Los datos deben ser categóricos.
    • Sólo se pueden utilizar recuentos brutos, no ratios, tasas, fracciones o porcentajes.
    • Se está realizando una comparación entre los resultados teóricos (esperados) y los experimentales (observados).

    ¿Cuáles son los supuestos de la prueba chi-cuadrado?

    Además, la prueba chi-cuadrado hace varias suposiciones:

    • Las comparaciones se realizan sobre muestras aleatorias.
    • El recuento esperado de cada célula es mayor que uno (>1).
    • No más del 20% de las células tienen recuentos esperados inferiores a 5 (<5).

    ¿Cómo se calcula la ji al cuadrado?

    La fórmula da mucho miedo, ¡pero que no cunda el pánico! Podemos descomponerla en pasos.

    ¿Cuál es la fórmula de la ji al cuadrado?

    X2=(O-E)2EX2= The test statistic= The sum ofO = Observed frequency E = Expected frequency

    En otras palabras, chi-cuadrado X2 es la suma del cuadrado de la diferencia entre los valores observados y los valores esperados (O-E)2dividido por los valores esperados (E).

    Para ayudarte a entender cómo calcularíamos la chi-cuadrado, utilizaremos como ejemplo el fenotipo de las flores.

    Para calcularlo

    • Obtén los resultados esperados y observados del experimento (como se muestra en la tabla siguiente)
    • Calcula la diferencia entre cada conjunto de resultados
    • Eleva al cuadrado cada diferencia
    • Divide cada diferencia al cuadrado por el valor esperado
    • Utiliza la suma de estas respuestas para obtener el valor chi-cuadrado

    Tabla 1. Ejemplo de tabla para hallar valores para el cálculo de Chi-cuadrado.

    Fenotipo de la florNúmero observado (O)Proporción esperadaNúmero esperado (E)(número total x ratio/16)O-E(O-E)^2/E
    Rosa/Ronda 29692405613.067
    Rosa/Largo19380-6146.513
    Morado/Rojo27380-5335.113
    Morado/largo8512758124.593
    Total427X^2219.29

    ¿Cómo se calculan los grados de libertad y se utiliza una tabla de distribución chi-cuadrado?

    La prueba Chi-cuadrado tiene poco significado por sí misma: es necesario compararla con "valores críticos", que se encuentran en tablas o gráficos calculados por expertos en estadística.

    En primer lugar, debes decidir el nivel de confianza que quieres utilizar. El más habitual suele ser el 95% y/o el 99%, lo que significa que por cada 100 veces que realices la prueba, obtendrás resultados de azar en cinco ocasiones o en una ocasión.

    Tabla 2. Niveles de confianza, incertidumbre y probabilidad.

    Mucha confianzaMucha confianzaExtremadamente seguro
    Nivel de confianza95%99%99.9%
    Nivel de incertidumbre5%1%0.1%
    Nivel de probabilidad (valor p)0.050.010.001

    A continuación, utilizamos el valor que hemos obtenido en la prueba Chi-cuadrado para ver si los datos son estadísticamente significativos. Para ello se utiliza una tabla de distribución. La tabla de distribución relaciona el valor chi-cuadrado con las probabilidades. También utilizamos los grados de libertad para determinar el número de comparaciones realizadas.

    Para una prueba chi-cuadrado, los grados de libertad equivalen al número de categorías menos uno (n-1). También tendrás que determinar tu valor p.

    Los grados de libertad utilizados para la prueba chi-cuadrado son siempre n-1

    Aquí tienes un ejemplo de tabla chi-cuadrado estándar. Lee la tabla mirando la fila correspondiente a los grados de libertad utilizados en tu experimento y la columna correspondiente a tu valor p. Encontrarás tu valor crítico en la intersección de estas filas y columnas.

    Tabla 3. Tabla de distribución estándar.

    Probabilidad de que la diferencia entre lo observado y lo esperado se deba al azar
    Grados de libertad0.10.050.010.001
    12.273.846.6410.83
    24.605.999.2113.82
    36.257.8211.3416.27
    47.789.4913.2818.46

    Si el valor de tu prueba chi-cuadrado es mayor que el valor crítico (el valor hallado en la tabla), entonces la desviación entre tus resultados esperados y observados es estadísticamente significativa. Si no es mayor que el valor crítico, la diferencia no es significativa.

    ¿Cómo se utiliza la prueba chi-cuadrado en genética?

    Las pruebas chi-cuadrado se utilizan en toda la biología. Por ejemplo, pueden ser muy útiles para determinar si los resultados de un cruce genético son significativamente diferentes de las predicciones teóricas.

    Crucegenético: Cruce deliberado de dos individuos diferentes que da lugar a una descendencia portadora de parte del material genético de cada progenitor.

    Tomemos, por ejemplo, los resultados reales que obtuvo Gregor Mendel durante sus experimentos con guisantes sobre la herencia del tipo de semilla. Mendel realizó experimentos con plantas de guisantes para determinar los patrones de herencia de algunos de los rasgos observables de las plantas. Para más información sobre sus experimentos, ¡consulta nuestros artículos sobre Herencia!

    Un único gen determina el tipo de semilla, con un alelo dominante que produce semillas lisas y un alelo recesivo que produce semillas arrugadas. El experimento de Mendel dio como resultado 5474 semillas lisas y 1850 arrugadas. Teniendo en cuenta cierto error estadístico, ¿cómo podemos saber si este resultado se ajusta a nuestra proporción esperada?

    Error estadístico: La diferencia entre un valor medido y el valor real de los datos recogidos. Si el valor del error es más significativo, los datos se considerarán menos fiables.

    Cuando sigas estos pasos, te resultará útil resumir tus cálculos en una tabla como ésta:

    Tabla 4. Otro ejemplo de cómo obtener los valores para la ecuación.

    Categoría

    Observado

    Esperado

    O-E

    (O-E)2

    (O-E)2/E

    Suave

    5474

    5493

    -19

    361

    0.0657

    Arrugado

    1850

    1831

    19

    361

    0.1972

    Total = 7324

    0.2629

    1. En primer lugar, calculemos los valores esperados. En este caso, hallaríamos el número total de descendientes (5474+1850 = 7324) y lo dividiríamos según la proporción 3:1. Esto nos da unos valores esperados de (7324 x ¾ =) 5493 semillas lisas y (7324 x ¼ =)1831 semillas arrugadas.
    2. Ahora necesitamos conocer la diferencia entre los valores observados y los esperados. Para la categoría lisa, la diferencia es (5474-5493 =) -19, mientras que para la categoría arrugada, la diferencia es (1850-1831 =) 19.
    3. Si elevamos al cuadrado estas diferencias, obtenemos 361 para las semillas lisas y 361 para las arrugadas.

    Al elevar los valores al cuadrado, cualquier valor negativo se anula.

    4. Por último, cuando dividimos estos valores por sus respectivos valores esperados, obtenemos 0,0657 y 0,1972. Sumados, nos dan 0,2629. 5. Comprobemos la tabla de distribución chi-cuadrado anterior. Tenemos dos categorías, lo que significa que nuestro grado de libertad es 2-1=1. 6. Para hallar nuestro valor crítico, utiliza la tabla estándar de antes, encuentra la fila correspondiente a nuestro grado de libertad (1) y la columna correspondiente a nuestro valor p (0,05). Se cruzan en el valor crítico de 3,84. 7 . 0.2629<3.84. Por lo tanto, los valores observados y esperados no son significativamente diferentes entre sí. Las ligeras diferencias de valor se deben al azar.

    ¿Y si los valores observados son significativamente diferentes de los valores esperados?

    Supongamos que los valores observados son significativamente diferentes de los valores esperados. Si el resultado es menor o igual que el valor p indicado, hay algunas cosas que quizá debamos tener en cuenta. Como ya se comentó en el artículo sobre ligamiento sexual, ligamiento autosómico y epistasis, hay varias razones por las que podríamos observar patrones de herencia que no se ajustan a las proporciones mendelianas.

    • El rasgo puede estar ligado al sexo, lo que significa que el sexo del individuo afecta a si puede heredar el rasgo.
    • Puede que dos genes se encuentren en el mismo cromosoma y, por tanto, presenten ligamiento.
    • La epistasis también podría afectar a los fenotipos expresados por el individuo.

    Ligamientosexual: El ligamiento sexual es la expresión fenotípica de un alelo que depende del sexo del individuo y está directamente ligado a los cromosomas sexuales.

    Ligamientoautosómico: El ligamiento autosómico se produce si dos o más genes están localizados en el mismo autosoma (cromosoma no sexual). Es menos probable que los dos genes se separen durante el crossing over, lo que hace que los alelos de los genes ligados se hereden juntos.

    Epistasis: La epistasis es una circunstancia en la que la expresión de un gen se ve afectada por la expresión de uno o más genes heredados independientemente.

    Prueba de Chi-cuadrado - Puntos clave

    • La chi-cuadrado (χ2) pone a prueba la hipótesis nula de que no existe una diferencia estadísticamente significativa entre los resultados observados y los esperados de un experimento.

    • Puede realizarse en muestras de gran tamaño (>20), utilizando recuentos brutos de datos categóricos.

    • Chi-cuadrado es la suma del cuadrado de la diferencia entre los valores observados y esperados, dividida por los valores esperados.

    • Se utiliza una tabla de distribución chi-cuadrado para determinar el valor crítico correcto para los grados de libertad y el valor p dados.

    • Cuando el chi-cuadrado es superior al valor crítico, la diferencia entre los resultados esperados y observados es significativa.

    • Los grados de libertad se calculan restando uno al número de categorías.

    Aprende más rápido con las 0 tarjetas sobre Prueba de Chi-Cuadrado

    Regístrate gratis para acceder a todas nuestras tarjetas.

    Prueba de Chi-Cuadrado
    Preguntas frecuentes sobre Prueba de Chi-Cuadrado
    ¿Qué es la prueba de Chi-Cuadrado?
    La prueba de Chi-Cuadrado es una prueba estadística que evalúa si hay una diferencia significativa entre las frecuencias observadas y las frecuencias esperadas.
    ¿Para qué se utiliza la prueba de Chi-Cuadrado en biología?
    Se utiliza para determinar si existe una asociación entre variables categóricas, como en estudios de genética o ecología.
    ¿Cómo se interpreta el resultado de la prueba de Chi-Cuadrado?
    Si el valor p es menor que 0.05, se rechaza la hipótesis nula y se concluye que hay una diferencia significativa.
    ¿Cuáles son los supuestos de la prueba de Chi-Cuadrado?
    Los supuestos son: las muestras son independientes, las categorías son mutuamente excluyentes y el tamaño de muestra es suficiente.
    Guardar explicación

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Biología

    • Tiempo de lectura de 11 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.