Cuarta Ecuación de Maxwell

Sumérgete en el intrigante mundo de la física con una completa guía sobre la 4ª Ecuación de Maxwell. Como pilar básico del electromagnetismo, la comprensión de la 4ª Ecuación de Maxwell abre la puerta a la comprensión de los principios fundamentales que rigen el universo. Esta guía se mete en la piel de la 4ª Ecuación de Maxwell, detallando su historia, explicando la definición de su ecuación y su interpretación lingüística. También se explora en profundidad la relación entre la 4ª Ecuación de Maxwell y la Ley de Ampere. Los aficionados a las matemáticas apreciarán el elaborado recorrido por la derivación de la ecuación. Por último, se examinan las implicaciones y aplicaciones de la 4.ª Ecuación de Maxwell en el mundo real de la física, incluidos sus usos en la óptica ondulatoria. Se trata de una lectura esencial para quienes deseen ampliar sus conocimientos de física.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué es la 4ª Ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué es la corriente de desplazamiento en la 4ª ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el significado de la 4ª Ecuación de Maxwell en términos de ondas electromagnéticas?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la importancia de la 4ª Ecuación de Maxwell en comparación con la Ley de Ampere?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué sugiere la Ley de Ampère en electromagnetismo?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué es el concepto de "corriente de desplazamiento" en la 4ª ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el punto de partida para la derivación de la 4ª Ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo abordó Maxwell el problema de la existencia de un campo magnético en ausencia de corriente eléctrica en la derivación de la 4ª ecuación?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué incorpora la 4ª ecuación de Maxwell sobre la relación entre campos eléctricos y campos magnéticos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la principal implicación de la 4ª Ecuación de Maxwell en la comprensión de los campos electromagnéticos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo contribuye la 4ª Ecuación de Maxwell a la comprensión de la velocidad de la luz?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué es la 4ª Ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué es la corriente de desplazamiento en la 4ª ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el significado de la 4ª Ecuación de Maxwell en términos de ondas electromagnéticas?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la importancia de la 4ª Ecuación de Maxwell en comparación con la Ley de Ampere?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué sugiere la Ley de Ampère en electromagnetismo?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué es el concepto de "corriente de desplazamiento" en la 4ª ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el punto de partida para la derivación de la 4ª Ecuación de Maxwell?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo abordó Maxwell el problema de la existencia de un campo magnético en ausencia de corriente eléctrica en la derivación de la 4ª ecuación?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué incorpora la 4ª ecuación de Maxwell sobre la relación entre campos eléctricos y campos magnéticos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la principal implicación de la 4ª Ecuación de Maxwell en la comprensión de los campos electromagnéticos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cómo contribuye la 4ª Ecuación de Maxwell a la comprensión de la velocidad de la luz?

Mostrar respuesta

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Cuarta Ecuación de Maxwell

  • Tiempo de lectura de 17 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Comprender la 4ª Ecuación de Maxwell

    La 4ª ecuación de Maxwell, conocida como Ley de Ampere con la adición de Maxwell, es una piedra angular del electromagnetismo clásico. Te resultará increíblemente útil para comprender la interacción entre corrientes eléctricas, campos magnéticos y ondas electromagnéticas.

    Fundamentos de la 4ª Ecuación de Maxwell

    La 4ª Ecuación de Maxwell se representa elegantemente en forma integral como

    \[ \oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 \varepsilon_0 \frac{d}{dt} \INT \mathbf{E} + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \d\cdot d\mathbf{a}]
    • \( \mathbf{B} \) es el campo magnético
    • \( d\mathbf{l} \) es un elemento de longitud diferencial
    • \( \mu_0 \) es la permeabilidad del espacio libre
    • \( \varepsilon_0 \) es la permitividad del espacio libre
    • \( \mathbf{E} \) es el campo eléctrico
    • \( d\mathbf{a} \) es un elemento de área diferencial
    • \( \mathbf{J} \) es la densidad de corriente

    Historia y concepto básico de la 4ª ecuación de Maxwell

    La 4ª ecuación de Maxwell se basa en la ley circuital de Ampere, añadiendo un término adicional, la corriente de desplazamiento, que tiene en cuenta los cambios en los campos eléctricos, permitiendo el principio de propagación de ondas electromagnéticas.

    Una analogía útil es el flujo de agua en un río. Si consideramos el cambio de la anchura del río (análogo al cambio del campo eléctrico), podemos ver que este cambio afecta al caudal de agua (análogo a la corriente eléctrica).

    La 4ª ecuación de Maxwell, al introducir esta corriente de desplazamiento, completó efectivamente la teoría clásica del electromagnetismo, sentando así las bases para el desarrollo de la física moderna.

    Explicación detallada de la 4ª ecuación de Maxwell

    La 4ª Ecuación de Maxwell es una gran herramienta para comprender el comportamiento de los campos electromagnéticos. Esencialmente, calcula el campo magnético creado por una corriente eléctrica y el cambio de campo eléctrico dentro de un área específica.

    Definición de la ecuación

    Aquí tienes un desglose de los componentes de la 4ª Ecuación de Maxwell:
    VariableDescripción
    \( \oint \mathbf{B} \cdot d\mathbf{l} \) Flujo magnético a través de la espira
    \( \mu_0 \) Permeabilidad del espacio libre
    \( \varepsilon_0 \) Permittividad del espacio libre
    \( \frac{d}{dt} \int \mathbf{E} \cdot d\mathbf{a} \) Tasa de cambio del flujo eléctrico
    \( \int \mathbf{J} \cdot d\mathbf{a} \) Corriente que pasa por la espira

    Significado e interpretación de la 4ª ecuación de Maxwell

    La 4ª ecuación de Maxwell dice esencialmente que el campo magnético alrededor de una espira cerrada es igual a la suma de la corriente eléctrica que pasa por esa espira más la velocidad de cambio del campo eléctrico multiplicada por una constante. Esta ecuación es fundamental para comprender cómo las ondas electromagnéticas, como la luz, irradian a través del espacio. Cuando un campo eléctrico cambia rápidamente, como en un circuito de corriente alterna, la corriente de desplazamiento se vuelve significativa y da lugar a la propagación de ondas electromagnéticas.

    4ª Ecuación de Maxwell y Ley de Ampere

    Para comprender la naturaleza de los campos electromagnéticos, recorremos el camino frecuentado por dos grandes mentes científicas: James Clerk Maxwell y André-Marie Ampère. El viaje comienza con Ampere y culmina en la 4ª ecuación de Maxwell.

    Relación entre la 4ª ecuación de Maxwell y la Ley de Ampere

    La 4ª ecuación de Maxwell es una ampliación de la ley de Ampère, que sólo considera la influencia de una corriente eléctrica sobre un campo magnético. La 4ª ecuación de Maxwell tiene en cuenta un actor adicional: el campo eléctrico cambiante y la corriente de desplazamiento que lo acompaña.

    Comprender la ley de Ampère

    La ley de Ampère es un principio fundamental del electromagnetismo que relaciona directamente el campo magnético que circula en el espacio alrededor de un hilo con la corriente que lo atraviesa. Puede representarse matemáticamente como: \[ \oint \mathbf{B} \punto d\mathbf{l} = \mu_0 punto \mathbf{J} \d\mathbf{a}] Con:
    • \( \mathbf{B} \) que representa el campo magnético
    • \( d\mathbf{l} \) es un elemento diferencial de la trayectoria alrededor de la cual se mide el campo magnético
    • \( \mu_0 \) como la permeabilidad del espacio libre
    • \( \int \mathbf{J} \cdot d\mathbf{a} \) simbolizando la corriente eléctrica que atraviesa la espira
    En términos más concretos, la ley de Ampère sugiere que si tomas una espira de alambre energizada con una corriente eléctrica, producirá un campo magnético que circulará a su alrededor. La intensidad de este campo magnético es proporcional a la magnitud de la corriente y disminuye con la distancia al hilo.

    4ª Ecuación de Maxwell basada en la ley de Ampère

    Sin embargo, la ley de Ampère necesitaba un ajuste importante para hacerse universal. Le faltaba un escenario crucial: los campos eléctricos que cambian rápidamente también generan un campo magnético. Este escenario es frecuente en la naturaleza, como en los condensadores y en la propagación de ondas de radio. Surge la 4ª ecuación de Maxwell, que introduce con precisión el concepto de "corriente de desplazamiento" para captar las contribuciones del campo eléctrico cambiante.

    Cómo contribuye la ley de Ampere a la 4ª ecuación de Maxwell

    La 4ª ecuación de Maxwell mejora la ley de Ampere añadiendo el término relacionado con la corriente de desplazamiento: \[ \oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 \varepsilon_0 \frac{d}{dt} \INT \mathbf{E} \d\mathbf{a} + \mu_0 \int \mathbf{J} \Aquí:
    • \( \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E} \cdot d\mathbf{a} \) es el término de corriente de desplazamiento
    • \( \mathbf{E} \) son los vectores del campo eléctrico
    • \( \varepsilon_0 \) es la permitividad del espacio libre
    • \( \frac{d}{dt} \) denota el cambio con respecto al tiempo
    La corriente de desplazamiento considera el campo eléctrico cambiante como una corriente efectiva que genera un campo magnético del mismo modo que el movimiento de las cargas. Como tal, la 4ª ecuación de Maxwell no sólo explica la creación de un campo magnético debido a una corriente eléctrica, sino también debido a campos eléctricos variables, reforzando la profunda conexión entre los fenómenos eléctricos y magnéticos. Esto se funde maravillosamente en el concepto de ondas electromagnéticas que sirve de base a la luz, la radio y gran parte de las tecnologías modernas de comunicación.

    Profundizando en el lado matemático: Derivación de la 4ª Ecuación de Maxwell

    En física, la magia a menudo no reside sólo en las propias ecuaciones, sino en el camino de su derivación. Sigamos este camino para comprender cómo surge la 4ª Ecuación de Maxwell, empezando por la perspectiva histórica y los pasos iniciales, para luego sumergirnos en el proceso matemático paso a paso.

    Visión general de la derivación de la 4ª ecuación de Maxwell

    La derivación de la 4ª Ecuación de Maxwell comienza con la ley de Ampère. La ley de Ampère relaciona el campo magnético alrededor de una espira cerrada con la corriente eléctrica que circula por ella. Sin embargo, las circunstancias en las que no hay corriente física, pero sí un campo eléctrico cambiante, obligaron a Maxwell a añadir el término correspondiente a la corriente de desplazamiento: \[ \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E} \cdot d\mathbf{a}] Este término incluye el campo eléctrico \( \mathbf{E} \), la permitividad del espacio libre \( \varepsilon_0 \), y la velocidad de cambio con respecto al tiempo dada por \( \frac{d}{dt} \).

    Pasos iniciales en el proceso de derivación

    El proceso de derivación de la 4ª Ecuación de Maxwell comienza con la forma integral de la ley de Ampère: \[ \oint \mathbf{B} \d\mathbf{l} = \mu_0 \int \mathbf{J} \cdot d\mathbf{a} \] El quid reside en comprender que la corriente eléctrica descrita por la ley de Ampère no puede dar cuenta del campo magnético entre las placas durante un escenario de carga del condensador. Esto se debe a que no hay corriente eléctrica activa en el hueco y, sin embargo, se puede detectar un campo magnético mediante una brújula. Para resolverlo, Maxwell introdujo el concepto de "corriente de desplazamiento", que tiene en cuenta el cambio del campo eléctrico. Intuitivamente, puedes pensar en la corriente de desplazamiento como la "corriente" que parece fluir entre las placas del condensador de carga, aunque no haya flujo físico de cargas.

    Completar la derivación de la 4ª ecuación de Maxwell

    La corriente de desplazamiento \(Idis\) es una corriente teórica y puede expresarse matemáticamente en términos de cambio de campo eléctrico como \[ I_{dis} = \varepsilon_0 \frac{d}{dt} \int \mathbf{E} \cdot d\mathbf{a} \] Multiplicando ambos lados por \( \mu_0 \), obtenemos la forma magnética equivalente: \[ \mu_0 I_{dis = \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E} \cdot d\mathbf{a} \] Debido a su equivalencia con una corriente eléctrica real en términos de generación de campo magnético, podemos añadir este término al lado derecho de la ley de Ampère, lo que nos lleva a la 4ª Ecuación de Maxwell en forma integral: \[ \oint \mathbf{B} \d\mathbf{l} = \mu_0 \int \mathbf{J} \punto dmathbf{a} + \mu_0 \varepsilon_0 \frac{d}{dt} \int \mathbf{E} \d\mathbf{a}]

    Pasos finales y llegada a la 4ª ecuación de Maxwell

    Para concluir la derivación, la última pieza del rompecabezas es comprender la universalidad de la ecuación. La belleza de la 4ª Ecuación de Maxwell es que no es específica de ninguna situación, sino que es válida para todos los fenómenos electromagnéticos. Mientras que la corriente física contribuye a la generación de un campo magnético, el cambio en un campo eléctrico (incluso en ausencia de corriente física) también puede crear un campo magnético, captado por el término de corriente de desplazamiento. De este modo, incorporando con éxito la profunda relación entre los campos eléctricos cambiantes y los campos magnéticos resultantes, la 4ª ecuación de Maxwell dio forma a la comprensión de la propagación de las ondas electromagnéticas y fue pionera en el camino hacia la teoría electromagnética de la luz.

    Implicaciones y aplicaciones de la 4ª ecuación de Maxwell en física

    Al considerar sus implicaciones y aplicaciones, la 4ª Ecuación de Maxwell no es simplemente una compleja relación matemática. Esta ecuación, y cómo tiende un puente entre la corriente y el desplazamiento, abre un mundo de posibilidades en la comprensión de los campos electromagnéticos y sus interacciones.

    Comprender las implicaciones de la 4ª Ecuación de Maxwell

    La 4ª Ecuación de Maxwell completa esencialmente el círculo de las interacciones de los campos eléctrico y magnético. Destaca que los cambios en los campos eléctrico y magnético no son fenómenos aislados, sino que están íntimamente interrelacionados. Esto sienta las bases del concepto de ondas electromagnéticas, una implicación fundamental de la 4ª Ecuación de Maxwell. Las ondas electromagnéticas, que incluyen las ondas de radio, las microondas, la luz y los rayos X, son oscilaciones autosostenidas de campos eléctricos y magnéticos, y la descripción de estas ondas requiere el conjunto completo de ecuaciones de Maxwell, en particular la 4ª ecuación, en la que el concepto de corriente de desplazamiento permite la existencia de ondas electromagnéticas incluso en el espacio vacío, o vacío. La ecuación también insinúa la velocidad de la luz basándose en las constantes de permitividad y permeabilidad. Esta velocidad se deduce teóricamente de las ecuaciones de Maxwell, estableciendo el vínculo entre el electromagnetismo y la luz. \[ c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}] Donde:
    • \( c \) es la velocidad de la luz
    • \( \mu_0 \) es la permeabilidad del espacio libre
    • \( \varepsilon_0 \) es la permitividad del espacio libre
    La belleza de esta relación reside en la naturaleza universal de estas constantes, que ofrecen una elegante explicación de por qué la velocidad de la luz es fija independientemente del marco de referencia del observador. Este hallazgo allanó el camino para que Einstein desarrollara la teoría especial de la relatividad.

    Profundización: La teoría de la relatividad de Einstein explica efectivamente por qué las ecuaciones de Maxwell dan el mismo valor para la velocidad de la luz, independientemente del marco de referencia. Esto significaba que todo observador inercial mide que la luz se mueve a la misma velocidad, independientemente de su propio movimiento, lo que provocó profundos cambios en la física y sentó las bases de la cosmología moderna.

    Aplicaciones reales de la 4ª Ecuación de Maxwell

    Tu comprensión de la 4ª Ecuación de Maxwell no termina con las implicaciones teóricas. Esta poderosa ecuación tiene aplicaciones en el mundo real, en tecnologías cotidianas de las que quizá no te hayas dado cuenta que tienen su origen en este pedazo de brillantez científica.

    Cómo se utiliza la 4ª ecuación de Maxwell en la óptica ondulatoria

    Una de las hazañas perdurables de la 4ª Ecuación de Maxwell es su contribución a la óptica ondulatoria, el estudio de la luz como fenómeno ondulatorio. Las ecuaciones de Maxwell proporcionan la solución de la ecuación ondulatoria, demostrando que la propia luz es una onda electromagnética. La naturaleza ondulatoria de la luz es fundamental para la tecnología láser, en la que las ondas luminosas de la misma frecuencia y fase crean un haz de luz coherente. Esta coherencia emana de la comprensión y manipulación de la naturaleza electromagnética de la luz guiada por las ecuaciones de Maxwell, en particular la 4ª ecuación. Las aplicaciones de los láseres van desde cirugías intrincadas hasta la lectura de datos de discos compactos.

    Por ejemplo, en la cirugía ocular con láser, se utiliza un rayo láser para eliminar con precisión tejido de la córnea, corrigiendo la visión mediante la remodelación de la lente natural del ojo. La exactitud y precisión del rayo láser dependen crucialmente de nuestra comprensión de la luz como onda electromagnética, posible gracias a la 4ª Ecuación de Maxwell.

    Las tecnologías de telecomunicación, como la radio, la televisión y el Wi-Fi, también se basan en los principios encapsulados en la 4ª ecuación de Maxwell. Estos dispositivos funcionan generando, transmitiendo y recibiendo ondas electromagnéticas. La ecuación ayuda a los ingenieros a comprender y calcular el comportamiento de estas ondas, lo que les permite diseñar canales de comunicación eficaces.

    El Wi-Fi, por ejemplo, utiliza ondas de radio para transmitir información entre dispositivos. Los datos se codifican en la onda como cambios de amplitud, frecuencia o fase, y se descodifican en el extremo receptor. Todo este proceso se basa en un profundo conocimiento de las ondas electromagnéticas, bien definidas por las ecuaciones de Maxwell.

    De hecho, la 4ª Ecuación de Maxwell es un elemento clave del electromagnetismo y su teoría uniforme, que permite estudiar la luz como una onda electromagnética. Es este profundo conocimiento el que abre la puerta a avances tecnológicos que mejoran nuestra vida cotidiana.

    4ª Ecuación de Maxwell - Puntos clave

    • La 4ª Ecuación de Maxwell se representa en forma integral y consta de elementos como el campo magnético \( \mathbf{B} \), el elemento de longitud diferencial \( d\mathbf{l} \), permeabilidad del espacio libre \( \mu_0 \), permitividad del espacio libre \( \varepsilon_0 \), campo eléctrico \( \mathbf{E} \), elemento de área diferencial \( d\mathbf{a} \), y densidad de corriente \( \mathbf{J} \).
    • La 4ª ecuación de Maxwell es una ampliación de la ley de Ampère, que introduce un término adicional -la corriente de desplazamiento- que da cuenta de los cambios en los campos eléctricos, permitiendo el principio de propagación de ondas electromagnéticas.
    • La 4ª ecuación de Maxwell calcula el campo magnético creado por una corriente eléctrica y el cambio de campo eléctrico dentro de un área específica, por lo que resulta esencial para comprender el comportamiento de los campos electromagnéticos.
    • La "corriente de desplazamiento", introducida en la 4ª ecuación de Maxwell, explica el cambio del campo eléctrico y la presencia de campo magnético en determinados escenarios en los que no hay corriente eléctrica real.
    • La 4ª Ecuación de Maxwell tiene profundas implicaciones en la comprensión de la propagación de las ondas electromagnéticas y la luz, y tiene aplicaciones en el mundo real en tecnologías como la óptica de ondas y la tecnología láser.
    Aprende más rápido con las 12 tarjetas sobre Cuarta Ecuación de Maxwell

    Regístrate gratis para acceder a todas nuestras tarjetas.

    Cuarta Ecuación de Maxwell
    Preguntas frecuentes sobre Cuarta Ecuación de Maxwell
    ¿Cuál es la Cuarta Ecuación de Maxwell?
    La Cuarta Ecuación de Maxwell, o ley de Ampère-Maxwell, relaciona el campo magnético con la corriente eléctrica y el campo eléctrico cambiante.
    ¿Qué describe la Cuarta Ecuación de Maxwell?
    Describe cómo los campos magnéticos son generados tanto por corrientes eléctricas como por campos eléctricos variables en el tiempo.
    ¿Cómo se formula matemáticamente la Cuarta Ecuación de Maxwell?
    Se formula como ∇ × B = μ₀(J + ε₀ ∂E/∂t), donde B es el campo magnético, J es la densidad de corriente, y E es el campo eléctrico.
    ¿Por qué es importante la Cuarta Ecuación de Maxwell?
    Es crucial para entender la propagación de las ondas electromagnéticas y la conexión entre electricidad y magnetismo.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Qué es la 4ª Ecuación de Maxwell?

    ¿Qué es la corriente de desplazamiento en la 4ª ecuación de Maxwell?

    ¿Cuál es el significado de la 4ª Ecuación de Maxwell en términos de ondas electromagnéticas?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 17 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.