La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
Aunque hoy en día hay aún un gran camino que recorrer, parecería que muchos aspectos importantes de la física ya han sido descubiertos y que las bases están sentadas. Aunque esto es debatible, no hace tanto la física era muy distinta a la que conocemos actualmente. Esto se debe a que grandes descubrimientos —como la teoría de la relatividad de…
Explore our app and discover over 50 million learning materials for free.
Guarda la explicación ya y léela cuando tengas tiempo.
GuardarLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenAunque hoy en día hay aún un gran camino que recorrer, parecería que muchos aspectos importantes de la física ya han sido descubiertos y que las bases están sentadas. Aunque esto es debatible, no hace tanto la física era muy distinta a la que conocemos actualmente. Esto se debe a que grandes descubrimientos —como la teoría de la relatividad de Einstein o las ecuaciones de Maxwell, por ejemplo— se establecieron hace poco más de un siglo, aunque nos parezcan pilares inmutables en la física que conocemos.
En este artículo, haremos un pequeño recorrido por la física más antigua, cómo evolucionó hasta los conceptos que conocemos hoy en día y qué llevó a que fueran descubiertos. ¿Te imaginas cómo serán las leyes de la física de aquí a 100 años?
Hacia finales del siglo XIX, la mayoría de la comunidad científica de físicos pensaba que habían resuelto la mayoría de problemas que podía plantear el universo. Tanto es así, que algunos físicos (como Michaelson) llegaron a decir que los principios más fundamentales de la física (mecánicos, termodinámicos, astronómicos...) se encontraban perfectamente establecidos. Por tanto, consideraban que únicamente faltaba refinar los métodos experimentales que confirmasen la mayoría de fenómenos físicos ya conocidos y ayudasen a predecir los que estaban por venir.
Unos pocos años después, comenzó el inicio del fin de toda la física estudiada hasta entonces: lo que hoy llamamos como física clásica. Esto se debe a que una serie de descubrimientos y, sobre todo, teorías radicales que fueron confirmadas posteriormente, tiraron por tierra las bases que a finales del siglo XIX se creían perfectas.
Algunas de las principales ramas de la física clásica son:
La física moderna —que es la sucesora de la física clásica— constituyó, entonces, una comprensión del mundo excepcional. Sin embargo, el precio a pagar fue un aumento significativo en la complejidad de los fenómenos y del formalismo matemático.
Los grandes problemas que la física tenía como tarea resolver a finales del siglo XIX eran dos: el problema del cuerpo negro (también conocido como catástrofe ultravioleta) y el problema del éter.
Los físicos del siglo XIX y principios del XX pensaban que había dos fuerzas fundamentales en el universo: la gravitación y el electromagnetismo:
No obstante, en esta época la noción de vacío no estaba asentada en la comunidad física. Por tanto, para establecer una teoría fuerte del electromagnetismo —que lograse describir ese extraño ente que llamamos luz— se necesitaba definir un medio por el cual la luz y las interacciones electromagnéticas se propagaran. Fue entonces cuando Michaelson realizó experimentos para probar la existencia de ese medio: el éter.
Estos experimentos dieron como resultado la concepción de que la luz se desplaza de igual forma en todas direcciones sin importar la velocidad del origen, como la Tierra misma. Esto significaba que no existía el éter y que, en consecuencia, las leyes de la física —en especial, las del electromagnetismo— se debían a la velocidad de los sistemas en los que se producían los fenómenos.
La homogeneidad del universo en relación con la luz y la constancia de su velocidad dejaron perplejos a los científicos. ¿Cómo podía ser que la velocidad de la luz no dependiese de nada externo? Las velocidades de los cuerpos, por entonces, se veían como algo que se podían sumar de la forma en que lo hacemos cuando estamos analizando simples problemas dinámicos.
Por ejemplo, el caso de los observadores que están en la acera, en comparación con que van en un tren en movimiento.
Sin embargo, un físico alemán, Albert Einstein, tenía una visión opuesta sobre este problema. Él creía firmemente en que las leyes de la física habían de ser las mismas en cualquier parte del universo para cualquier observador.
Dicho de otra forma: un observador en Saturno debería poder usar el mismo libro de física para experimentar que el que usaría alguien en el núcleo de la galaxia Andrómeda.
Por tanto, la ausencia de la convicción de que el éter era el medio que permitía la propagación de la luz, implicó la propuesta de que la velocidad de la luz es constante medida en el vacío y desde cualquier sistema. Así, la idea de que las leyes de la física han de ser iguales en cualquier sistema, llevaron a Albert Einstein a formular las teorías de relatividad especial y, más tarde, de la relatividad general. Estas teorías destruyeron los conceptos absolutos de espacio y tiempo, así como el concepto de que la gravedad es una fuerza. Por tanto, durante un breve periodo, las teorías de Einstein consiguieron formar un marco mucho más completo, coherente y sofisticado que el de la física clásica (a pesar de ser inicialmente irreconciliables con la física cuántica).
De igual manera, Michaelson se propuso resolver otra incógnita, con un salto de intuición mucho mayor y, quizá, una mayor dosis de suerte. Este problema era llamado el cuerpo negro o catástrofe ultravioleta. Consistía en la discrepancia entre los datos experimentales de la emisión de los cuerpos que absorbían calor y la emisión en forma de radiación electromagnética.
La aproximación de que este proceso se produce de manera ideal (sin pérdida de energía) se llama aproximación del cuerpo negro. Asimismo, este es el nombre que se les da a los cuerpos (reales o teóricos) que cumplen esta condición.
Esta discrepancia fue formulada por el científico alemán Kirchhoff, quien señaló con acierto que —según las leyes de termodinámica y la física estadística— a mayor calor comunicado a un cuerpo negro, habría de ser mayor la intensidad de emisión de ondas electromagnéticas muy energéticas (ondas ultravioleta). Sin embargo, todos los experimentos mostraban que la intensidad de las ondas energéticas decaía cuanto más energéticas eran, incluso aunque se aumentase la temperatura a la que se encontraba el cuerpo negro.
Otro físico alemán, llamado Max Planck, se encontraba ante el reto de dar una conferencia en el año 1900 sobre el problema del cuerpo negro (que había captado su atención años antes). Inspirado por el deseo de presentar avances en la resolución del problema, renunció a algo que se había dado por supuesto a lo largo de la historia de la física clásica: la continuidad de las magnitudes físicas como la energía o la posición.
Esta continuidad se refiere, por ejemplo, a las mediciones que podemos realizar con un aparato que calcule la energía de una radiación electromagnética de un sistema. Si tenemos un aparato con muchos ceros (es decir, muy preciso), la concepción histórica de continuidad afirmaba que, bajo todas las condiciones físicas posibles y sin importar el nivel de precisión del aparato, seríamos capaces de medir todos los números decimales que se nos ocurriesen.
Es pertinente mencionar que este concepto no alude a la capacidad experimental de nuestros aparatos. Si suponemos que nuestros aparatos miden cantidades reales del mundo, el concepto de continuidad alude a que la realidad puede producir cantidades que podemos medir como arbitrariamente cercanas, en términos numéricos.
Al renunciar a esta hipótesis, Planck estaba diciendo que las magnitudes de un sistema, o al menos del sistema formado por un cuerpo negro, solo podían presentarse de forma escalonada o discreta. En el caso de un aparato de medición suficientemente bueno y preciso, podríamos ser capaces de encontrar dos situaciones en las que (por ejemplo) la energía no pudiese acercarse arbitrariamente, sino que habría de mantenerse a una distancia finita. Según Planck, la carencia de aparatos suficientemente precisos nos impedía detectar esta condición de las magnitudes físicas, debido a que, si nuestros aparatos no eran suficientemente buenos, no seríamos capaces de resolver estos saltos, sino percibiríamos todo como algo continuo.
El hecho de plantear esta hipótesis tan radical y de suponer que los saltos de magnitudes físicas eran proporcionales a una cantidad constante (lo que hoy llamamos constante de Planck) permitió a Planck derivar una curva teórica que reproducía de forma exacta las predicciones sobre las emisiones de los cuerpos negros. Así, Planck había sentado las bases de la física cuántica.
De acuerdo con las teorías de Planck, la energía de radiación electromagnética viene en pequeños paquetes discretos a los que llamo cuantos. La energía de estos cuantos es proporcional a la frecuencia de radiación: (es una constante de Planck).
En 1905, Albert Einstein utilizó la hipótesis de Planck para explicar el efecto fotoeléctrico. Descubrió que ciertos materiales podían absorber luz y emitir electrones. Este descubrimiento lo llevó sugerir lo siguiente:
Las ondas electromagnéticas también pueden describirse como partículas, con una energía discreta que depende de su frecuencia.
Unos años más tarde, la física cuántica fue unificada por Hilbert, Dirac y Neumman, al explicar la naturaleza estadística de la materia. Así, grandes físicos del siglo XX se encargaron de desarrollar un formalismo muy complejo que permitiese describir cualquier fenómeno físico desde la incorporación de los aspectos fundamentales de la física cuántica.
Hoy se considera que esa descripción incide (de manera general) en todos los fenómenos. En consecuencia, es capaz de predecir la inmensa mayoría de los fenómenos que ya se habían descubierto hasta entonces y que se descubrirían posteriormente. De hecho, la mayoría de la física del siglo XX y del siglo XXI se ha enfocado en ofrecer una descripción cuántica de las fuerzas fundamentales —que fueron ampliadas de dos a cuatro, gracias al progreso experimental—.
Los principios y características fundamentales de la física moderna son:
Finalmente, presentamos una breve cronología de la historia de la física moderna, incluyendo los principales físicos del siglo XX y sus contribuciones.
A lo largo del siglo XX, han aparecido multitud de ramas complejas de la física apoyadas en la relatividad general y la física cuántica. Actualmente, siguen muy activas e intentando responder a grandes preguntas del universo. También, han permitido innovar en aplicaciones prácticas.
La física clásica se refiere a las teorías de la física que no incluyen la cuantización; por ejemplo, la mecánica clásica y la relatividad. Mientras que la física moderna incluye todos los fenómenos en los cuales las magnitudes físicas pueden tomar valores discretos y su evolución es probabilística. Además, se incluye que el espacio-tiempo es relativo y obedece a las leyes de la relatividad general.
Max Planck es considerado el padre de la física cuántica.
Científicos como Planck, Einstein, Bohr, Schrödinger, Dirac y Heisenberg.
En 1905, Einstein formuló la teoría de relatividad especial. Con esto resolvió problema del éter y afirmó que el espacio y el tiempo no son estructuras absolutas del universo.
de los usuarios no aprueban el cuestionario de Física del siglo XX... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.
Guarda las explicaciones en tu espacio personalizado y accede a ellas en cualquier momento y lugar.
Regístrate con email Regístrate con AppleAl registrarte aceptas los Términos y condiciones y la Política de privacidad de StudySmarter.
¿Ya tienes una cuenta? Iniciar sesión