Volumen y Densidad Molar

Imagina que tienes una botella de refresco con gas. Sabemos que cuando abrimos una botella, su contenido burbujea. ¿Sabes que esta efervescencia indica, en realidad, que el gas está saliendo de la botella? 

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Volumen Molar Gas Burbujas StudySmarterFig. 1: ¡Las burbujas saliendo de una botella son el gas escapando!

    Este fenómeno también puede verse en los neumáticos de los coches: a veces es necesario bombearlos con gas, lo que significa que el gas que contenían se ha escapado. En ambos casos, percibimos el gas, pero ¿Cuánto gas hay en cada una de estas cosas? En este artículo vamos a explorar cómo se mide el volumen molar de un gas.

    • En primer lugar, aprenderemos la definición de volumen molar de gas.
    • A continuación, exploraremos las unidades del volumen molar de los gases y la ecuación del volumen molar de un gas a temperatura y presión estándar.
    • Luego conoceremos otro tipo de ecuación del volumen molar de los gases, que se aplica cuando hay condiciones de temperatura y presiones distintas a las condiciones estándar.
    • Por último, veremos algunos ejemplos de cálculos de volumen molar de gas.

    ¿Qué es el volumen molar?

    El volumen molar de un gas es la medida del volumen de un mol de gas, que puede estar a temperatura y presión estándar o a otras temperaturas y presiones. La temperatura estándar es de 273,15 K (0 °C) y la presión estándar es de 1 atm.

    Para convertir una temperatura en grados Celsius a Kelvin, sumamos 273,15 al valor de la temperatura en grados Celsius. 1 atm de presión también es equivalente a 760 mmHg o 101352 Pa.

    Para profundizar en esto, pongamos un poco de contexto. Anteriormente, mencionamos una botella de refresco con gas. Utilizando los valores de volumen, moles o volumen molar de la bebida gaseosa, calculemos el dato que nos falta.

    Volumen: fórmula química

    La fórmula del volumen de un gas es

    $$volumen=moles \times volumen \ molar$$

    Esta fórmula es relativamente sencilla, ya que contiene solo tres términos. Estos son:

    • Volumen molar: el volumen de un mol de gas a temperatura y presión estándar. Este número es una constante, a menos que hablemos de una reacción que no esté en condiciones estándar. El valor es 22,4 L, que equivale a 22400 mL.
    • Volumen: es la cantidad de espacio que ocupa una forma 3D, si exploramos esto a través de una botella de refresco con gas, sabemos que hay varios tamaños. Por ejemplo, 330 ml y 1 l son unidades de volumen.
    • Moles: los moles son la unidad de la cantidad de sustancia. Se puede calcular de otra forma: dividiendo la masa por la masa molecular: $$moles=\frac{masa}{masa \ molecular}$$

    Una lata de refresco contiene aproximadamente 170 g de CO₂. Calcula el volumen ocupado por el CO₂ en una lata de refresco, si este se encuentra en condiciones estándar de temperatura y presión:

    Solución:

    Lo primero que debes hacer es calcular los moles de CO₂ en la lata de refresco, utilizando su masa molecular (44.01 g/mol): $$moles=\frac{masa}{masa \ molecular}=\frac {170\ g}{44,01\ g/mol}=3,9\ mol\ CO_2$$

    Luego, puedes calcular el volumen ocupado por el CO₂ recordando que, a temperatura y presión estándar, el volumen molar de cualquier gas ideal es 22,4 L/mol: $$volumen=moles \times volumen \ molar=(3,9\ moles)\times (22,4\ L/mol)=87\ L$$

    Unidades del volumen molar

    Las unidades del volumen molar son m3·mol o l/mol.

    ¿Cómo se calcula el volumen molar en condiciones estándar?

    En condiciones estándar, el volumen molar de un gas es 22,4 L.

    Las condiciones estándar son aquellas que utilizamos para referirnos a un sistema en el que la presión es de 1 atm y la temperatura es de 0 ºC (273K).

    En muchos casos, las sustancias se comportan de manera diferente, según si se encuentran en condiciones estándar o en condiciones diferentes.

    ¿Cuál es la fórmula de volumen molar de un gas en condiciones distintas al estándar?

    La fórmula de volumen molar de un gas en condiciones distintas al estándar es: $$V=\frac {nRT}{P}$$

    Donde:

    • P = Presión, que suele medirse en atm; pero, también puede expresarse en kPa, donde 1 kPa = 1000 Pa.
    • V = Volumen, que se mide en L. Ten en cuenta que es diferente de los L y los ml, ya que 1 L= 1000 mL.
    • n = los moles, que ya hemos explorado. Se pueden calcular dividiendo la masa por la masa molecular del compuesto.
    • R = Constante de los gases. \(R=0,0821 \frac {atm\cdot L}{mol\cdot K}\) La constante de los gases no varía en función de la presión, el volumen, ni la temperatura, pero se puede expresar en diferentes unidades como 1,987 cal/mol*K o 8,31 J/mol*K.
    • T = Temperatura, en kelvin (K), teniendo en cuenta que 273K = 0 °C.

    Ejemplos de volumen molar de un gas

    Ahora que hemos visto cómo se puede calcular el volumen molar de un gas a diferentes temperaturas y presiones, vamos a ponerlo en contexto con algunos ejemplos:

    Supongamos que tenemos un matraz de volumen 1500 mL que contiene 7,5 g de un gas. La presión en el matraz es de 250 kPa y la temperatura es de 21 °C. Calcula la masa molecular relativa del gas.

    Solución:

    1. En primer lugar, tenemos que hacer una conversión de unidades, ya que necesitamos L, moles, atm y K:

    $$1500\ mL\times \frac {1\ L}{1000\ mL}=1,5\ L$$

    $$250\ kPa\times \frac {1\ atm}{101,3\ kPa}=2,5\ atm$$

    $$K=°C+273,15=21 \ °C + 273,15=294,15\ K$$

    2. Luego, tenemos que reordenar la ecuación de los gases ideales para calcular los moles:

    $$n=\frac {PV}{RT}$$

    3. Ahora, introduzcamos estos valores en la ecuación:

    $$n=\frac {(2,5\ atm)(1,5\ L)}{(0,0821\frac {atm\cdot L}{mol\cdot K})(294,15\ K)}=0,16\ mol$$

    4. Por último, para calcular la masa molecular, utilizamos la siguiente ecuación:

    $$MM=\frac {masa}{moles}=\frac {7,5\ g}{0,16\ mol}=47\ g/mol$$

    Con lo cual:

    Masa molar = 47g/mol

    La razón por la que utilizamos estas unidades es que, al emplear los valores de masa y moles, estamos encontrando los gramos por mol.

    Calcula el volumen ocupado por 0,666 moles de oxígeno a una presión de 1350 mmHg y una temperatura de 27°C.

    Solución:

    1. Tenemos que reordenar la ecuación para calcular el volumen: $$V=\frac {nRT}{P}$$

    2. Ahora, tenemos que hacer las conversiones de unidades de los datos que nos han dado en el enunciado:

    $$n = 0,666\ moles$$

    $$1350\ mmHg\times \frac {1\ atm}{760\ mmHg}=1,78\ atm$$

    $$K=°C+273.15=27 \ °C + 273,15=300,15\ K$$

    3. Por último, introducimos los datos en la ecuación:

    $$V=\frac {(0,666\ mol)(0,0821\frac {atm\cdot L}{mol\cdot K})(300,15\ K)}{(1,78\ atm)}=9,22\ L$$

    ¿Cómo calcular la densidad de un gas?

    La densidad de un gas es la relación de la masa y el volumen que ocupa una sustancia. Como el volumen de un gas es mayor que la de un líquido, la densidad es menor.

    La densidad, ρ, de un gas ideal es \(\rho = \frac {masa}{V}\) en g/L.

    Si introducimos este concepto en nuestra ley de los gases ideales, obtenemos lo siguiente:

    $$PV=nRT=(\frac {m}{MM})RT$$

    $$P=(\frac {m}{V})\frac {RT}{MM}=\frac {\rho RT}{MM}$$

    Por lo que, si medimos la densidad, podremos sacar la masa molar de un gas:

    $$MM=\frac {\rho RT}{P}$$

    Otto von Guericke inventó el baróscopo para poder medir la densidad de los gases mediante una esfera de 500 mL y una balanza. Pero, se observó que los gases reales solo se comportaban como gases ideales a muy bajas presiones. Por esta razón, para calcular los pesos atómicos con una exactitud adecuada, Enrique Moles utilizó el método de densidades límites de los gases. Este método permitía medir la densidad a diferentes presiones y, luego, mediante extrapolación lineal de datos, calcular el valor a presión cero.

    Sabiendo que la densidad del agua es 1 g/mL, calcula su volumen molar.

    El agua tiene una masa molar de 18 g/mol y, como contamos con 1 mol, tenemos 18 g de agua. Suponiendo que el agua actúa como un gas ideal, el volumen molar sería:

    $$V_m=\frac {V}{n}=\frac {\frac {m}{\rho}}{n}=\frac {\frac {18\ g}{1 \ g/mL}}{1\ mol}=18\ mL/mol$$

    Volumen molar y densidad - Puntos clave

    • El volumen molar de un gas es la medida del volumen de un mol de gas. Puede ser a temperatura y presión estándar o en condiciones distintas.
    • El volumen molar de un gas en condiciones estándar es de 24 L, que equivale a 24000 mL.
    • Podemos emplear la ecuación \(volumen=moles \times volumen \ molar\) para calcular los moles y el volumen, utilizando la cifra del volumen molar de un gas en condiciones estándar.
    • En los casos en que tengamos una temperatura y una presión distintas a las estándares, usamos la ecuación \(PV=nRT\)
    • La densidad es la relación entre la masa y su volumen.
    Preguntas frecuentes sobre Volumen y Densidad Molar

    ¿Como se expresa el volumen molar?

    El volumen molar se expresa mediante las unidades de L/mol o dm3/mol.

    ¿Qué es el volumen molar y cómo se determina?

    El volumen molar de un gas es la medida del volumen de un mol de gas, que puede estar a temperatura y presión estándar o a otras temperaturas y presiones. 


    La temperatura estándar es de 273,15 K (0ºC) y la presión estándar es de 1 atm. Se determina según la ecuación volumen = moles x volumen molar.

    ¿Cómo calcular el volumen molar con la densidad?

    Para calcular el volumen molar con la densidad, si la densidad es la relación entre la masa y el volumen, en 1 mol de un gas el volumen sería: V = masa / densidad 

    ¿Cuál es el volumen de un mol de agua?

    El volumen de 1 mol de agua en estado gaseoso a condiciones estándar de presión y temperatura es 22,4 L.

    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Verdadero o falso?: El volumen molar sólo se puede calcular en condiciones estándar.

    ¿Cuáles son las unidades del volumen molar de un gas?

    ¿Qué es la densidad de un gas?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Química

    • Tiempo de lectura de 9 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.