Gráfico de Energía y Tiempo

¿Has ido alguna vez a un parque de atracciones y has probado la atracción del péndulo?

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando el objeto está en la posición de equilibrio, toda su energía es cinética.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando el objeto está en la amplitud, toda su energía es potencial.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que un bloque está diseñado para oscilar en el extremo del muelle con una constante de muelle \(k = 0,50\) y con amplitud \(x_m=4,0 \,\texto m\).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que un bloque está diseñado para oscilar en el extremo del muelle con una constante de muelle \(k=0,2\) y con amplitud \(x_m=10 \,\texto m\).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(1,0 \texto{kg}) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(10. \texto{Hz}) y con una amplitud de \(1,0 \texto{m\}).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(5,00 \,\text{kg}\) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(4,00 \,\text{Hz}\) y con una amplitud de \(0,250 \,\text{m\}).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(1,0 \,\text{kg}\) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(0,40 \,\text{Hz}\) y con una amplitud de \(4,0 \,\text{m\}).¿Cuál es la velocidad del bloque al pasar por la posición de equilibrio?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(5,0 \,\text{kg}\) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(4,0 \,\text{Hz}\) y con una amplitud de \(0,25 \,\text{m\}). ¿Cuál es la velocidad del bloque al pasar por la posición de equilibrio?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(4 \texto{kg}) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(2 \texto{Hz}) y con una amplitud de \(0,5 \texto{m}). ¿Cuál es la velocidad del bloque al pasar por la posición de equilibrio?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(2 \texto{kg}) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(0,5 \texto{Hz}) y con una amplitud de \(10 \texto{m}). ¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Los Gráficos Energía-Tiempo sólo pueden utilizarse para representar problemas mecánicos.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando el objeto está en la posición de equilibrio, toda su energía es cinética.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando el objeto está en la amplitud, toda su energía es potencial.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que un bloque está diseñado para oscilar en el extremo del muelle con una constante de muelle \(k = 0,50\) y con amplitud \(x_m=4,0 \,\texto m\).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que un bloque está diseñado para oscilar en el extremo del muelle con una constante de muelle \(k=0,2\) y con amplitud \(x_m=10 \,\texto m\).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(1,0 \texto{kg}) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(10. \texto{Hz}) y con una amplitud de \(1,0 \texto{m\}).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(5,00 \,\text{kg}\) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(4,00 \,\text{Hz}\) y con una amplitud de \(0,250 \,\text{m\}).¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(1,0 \,\text{kg}\) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(0,40 \,\text{Hz}\) y con una amplitud de \(4,0 \,\text{m\}).¿Cuál es la velocidad del bloque al pasar por la posición de equilibrio?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(5,0 \,\text{kg}\) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(4,0 \,\text{Hz}\) y con una amplitud de \(0,25 \,\text{m\}). ¿Cuál es la velocidad del bloque al pasar por la posición de equilibrio?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(4 \texto{kg}) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(2 \texto{Hz}) y con una amplitud de \(0,5 \texto{m}). ¿Cuál es la velocidad del bloque al pasar por la posición de equilibrio?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supongamos que el bloque tiene una masa de \(2 \texto{kg}) y está diseñado para oscilar en el extremo del muelle a una frecuencia de \(0,5 \texto{Hz}) y con una amplitud de \(10 \texto{m}). ¿Cuál es la energía mecánica total del sistema muelle-bloque?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Los Gráficos Energía-Tiempo sólo pueden utilizarse para representar problemas mecánicos.

Mostrar respuesta

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    La atracción del péndulo aplica un movimiento armónico de ida y vuelta. Cuando está en el nivel más alto, se detiene durante algún tiempo y luego empieza a moverse hacia abajo aumentando la velocidad. Después, vuelve a alcanzar su nivel máximo, se detiene de nuevo y empieza a moverse más rápido otra vez, repitiendo el ciclo. ¿A qué se debe? Este artículo responderá a esa pregunta explicando cómo utilizar el Gráfico Energía-Tiempo. A lo largo de los próximos párrafos, exploraremos la definición de una Gráfica Energía-Tiempo, compararemos una Gráfica Desplazamiento-Tiempo con una Gráfica Energía Potencial y Cinética-Tiempo, y haremos algunos cálculos y ejemplos.

    Energía Gráfico del tiempo Paseo del péndulo StudySmarterFig. 1 - La atracción del péndulo en un parque de atracciones te hace balancearte hacia delante y hacia atrás y hacia arriba y hacia abajo

    Definición del Gráfico Energía-Tiempo

    Empezaremos con una definición.

    Un Gráfico Energía-Tiempo es un modelo utilizado para mostrar cómo cambia la energía de un objeto a lo largo del tiempo.

    Gráfica de energía en el tiempo Una imagen de un bloque oscilando entre las posiciones -x y +x StudySmarterFig. 2 - Aquí hay un bloque \(A\) que está unido a un muelle. El bloque oscila entre desplazamientos de \(-x\) y \(+x\)

    Supongamos que tenemos un bloque \(A\) unido a un muelle. ¿Qué ocurre si lo comprimimos hasta la posición \(+x\) y luego lo soltamos? Cuando comprimimos el bloque hasta la posición \(+x\), ganará energía potencial elástica. Cuando el bloque vuelve al equilibrio, convierte su energía potencial en energía cinética. Lo mismo ocurrirá cuando se estire hasta la posición \(-x\); convertirá su energía cinética en energía potencial elástica. Al volver al estado original, la energía potencial se convierte de nuevo en energía cinética. La energía mecánica se conserva si el bloque está en un sistema cerrado, lo que significa que no hay disipación ni adición de energía. Por eso las energías cinética y potencial se convertirán sin parar, pero su valor total combinado será constante.

    Gráficos de energía y tiempo de desplazamiento

    Ahora, vamos a hacer un ejemplo de Movimiento Armónico Simple (MHS). A continuación se muestran dos gráficas que describen lo que le ocurre al bloque \(A\) (de la imagen anterior) mientras oscila hacia delante y hacia atrás.

    Gráfica del tiempo de desplazamiento

    Este gráfico muestra la posición del bloque \(A\) en función del tiempo.

    Gráfica Energía-Tiempo Gráfica Posición-Tiempo de un bloque que oscila entre las posiciones -x y +x StudySmarterFig. 3 - Ésta es una Gráfica Posición-Tiempo que muestra el cambio de posición del bloque \(A\) en el tiempo. La gráfica parte de la posición \(+x\) porque el bloque se estira y se suelta. El bloque seguirá oscilando entre \(+x\) y \(-x\)

    El movimiento traza una curva sinusoidal. Observa que tiene una amplitud de \(x\\) y un período de \(4\,\mathrm{s}\). Recuerda que la amplitud es la altura de la curva desde \(0\\) y el período es la cantidad de tiempo que tarda la curva en ir de un pico a otro pico.

    Gráfica de energía cinética y potencial frente al tiempo

    Este gráfico es el Gráfico Energía-Tiempo del bloque \(A\).

    Gráfica de energía-tiempo Gráfica de energía-tiempo de un bloque que oscila entre las posiciones -x y +x StudySmarterFig. 4 - Este es el gráfico Energía-Tiempo del bloque \(A\). Mientras que la curva verde muestra la energía potencial elástica, la curva roja muestra la energía cinética

    Con estos dos gráficos, podemos entender cómo se mueve el bloque y cómo transfiere su energía. Vayamos paso a paso.

    1. Después de comprimir el bloque hasta la posición \(+x\) y soltarlo, primero pasa del punto de equilibrio, como indica la gráfica de posición-tiempo entre \(0-1\,\mathrm{seg}\). Aquí pierde toda su energía potencial y la convierte en energía cinética.
    2. Al volver a la posición \(-x\) entre \(1-2\mathrm{seg}\), convierte su energía cinética en energía potencial al estirarse el muelle.
    3. En \(t=2s\), el sentido de la marcha se invierte y el bloque es acelerado de nuevo hacia el punto de equilibrio.
    4. Pasa de la posición de equilibrio convirtiendo su energía potencial en cinética entre los \(2-3\,\mathrm{seg}\).
    5. Y una vez más, convierte su energía cinética en energía potencial entre \(4-5,\mathrm{seg}).

    Este ciclo continúa eternamente, ya que en SHM se ignora el efecto de la fricción y la energía mecánica se conserva.

    Cuando el objeto está en la posición de equilibrio, toda su energía es energía cinética; cuando está en los desplazamientos máximos, toda es energía potencial.

    La fórmula de la energía del oscilador

    Durante la oscilación, mientras que la energía mecánica es constante, las energías cinética y potencial pueden variar con el tiempo. Por ejemplo, la variación de la energía potencial de un oscilador lineal depende de lo comprimido o estirado que esté el muelle, que es \(x(t)\mathrm{.}\)

    A partir de los principios del movimiento armónico simple, podemos expresar el desplazamiento en cualquier punto del tiempo como \(x(t)=x_\text{m} \cos{(\omega t + \phi )}\), donde \(x(t)\) es la función del desplazamiento con respecto al tiempo, \(x_\text{m} \) es el desplazamiento máximo, \(\omega \) es la velocidad angular, \(t) es el tiempo, y \(\phi \) es el desfase de la función coseno.

    La energía potencial elástica se calcula como \(U=\frac{1}{2}\ kx^2 \), por lo que podemos insertar \(x(t)\) en la fórmula de la energía potencial de este modo:

    $$U(t)=\frac{1}{2}\ kx^2 = \frac{1}{2}\k(x_\text{m} \cos{(\omega t + \phi )})^2$$

    $$U(t) = \frac{1}{2}\k x_\text{m} ^2 \cos^2{(\omega t + \phi)}\mathrm{.}$$

    Por otro lado, la variación de la energía cinética depende de la velocidad del bloque. Sabemos que la energía cinética puede hallarse a partir de \(K=\frac{1}{2}\ mv^2 \). Si \(x(t) = x_\text{m} \cos{(\omega t + \phi )}), podemos deducir la velocidad como \(V(t) = - \omega x_\text{m} \seno{(\omega t + \phi )}).

    Podemos insertar esto en la fórmula de la energía cinética,

    $$K(t)=\frac{1}{2}\ m(v(t))^2 = \frac{1}{2}\ m(-\omega x_\text{m} \sin{(\omega t + \phi )})^2$$

    $$K(t) = \frac{1}{2}\ m \omega ^2 x_\text{m} ^2 \sin^2{(\omega t +\phi )}\mathrm{,}$$

    y como \(\omega ^2 = \frac{k}{m}), podemos transformar la fórmula de la energía cinética en

    $$K(t) = \frac{1}{2}\ k x_\text{m} ^2 \sin^2{(\omega t + \phi )}\mathrm{.}$$

    Durante la oscilación, la energía mecánica total \(E\) se conserva. Por tanto, la suma de la energía cinética y la energía potencial es igual a la energía mecánica:

    $$E=U+K$$

    $$E=\frac{1}{2}\ k x_\text{m} ^2 \cos^2{(\omega t + \phi )} + \frac{1}{2}\ k x_\text{m} ^2 \sin^2{(\omega t +\phi )}\mathrm{.}$$

    Como \(\frac{1}{2}\ k x_\text{m} ^2 \) es la parte común de la ecuación, podemos reescribir la suma como

    $$E=\frac{1}{2}\ k x_\text{m} ^2 (\cos^2{(\omega t + \phi )} + \sin^2{(\omega t + \phi )})\mathrm{.}$$

    Es importante saber que \(\sin^2{a} + \cos^2{a} = 1\). Por tanto, la suma será igual a \(E=frac{1}{2}\k x_\text{m} ^2 \).

    En SHM, ¡la energía mecánica total es independiente del tiempo! Sólo depende de la constante del muelle y de la amplitud.

    Gráfico energía-tiempo del condensador

    Hasta ahora, en realidad sólo hemos mostrado cómo los Gráficos Energía-Tiempo pueden ayudarnos a comprender los osciladores. Pero no es su única utilidad. Los Gráficos Energía-Tiempo también pueden ayudarnos a modelar la energía de los condensadores.

    Aunque Física AP 2 se centra sobre todo en la electricidad y el magnetismo, sigue siendo útil saber que los Gráficos Energía-Tiempo tienen otros usos además de modelizar problemas de mecánica. Una Gráfica Energía-Tiempo para un condensador suele ser logarítmica o exponencial. A continuación se muestra un ejemplo de una posible Energía \(U\) frente al Tiempo \(t\) para un condensador mientras se carga.

    Gráfico Energía Tiempo Capacitor Gráfico Energía Tiempo StudySmarterFig. 5 - Así podría ser la gráfica Energía-Tiempo de un condensador

    A partir de esta gráfica, podemos ver que un condensador gana energía a un ritmo decreciente a medida que se acerca a su carga máxima.

    Cálculo de la energía dada por la gráfica Energía-Tiempo

    No hay ninguna aplicación real para el área bajo una Gráfica Energía-Tiempo, a menos que hablemos de física cuántica y cambios de fase. Supongo que el único conocimiento que tienes sobre física cuántica procede de Vengadores: Endgame (que está todo mal: ¡sorpresa!), así que no entraremos en esa madriguera de conejo.

    Sin embargo, la pendiente de una Gráfica Energía-Tiempo nos dice algo útil. Pero, antes de entrar en ello, necesitamos un poco de información general.

    La potencia es igual a la tasa de energía en el tiempo. Por tanto, la potencia nos da una cantidad de la fuerza de nuestros paquetes de energía. Un poco de energía durante mucho tiempo nos dará poca fuerza. Mientras que una gran cantidad de energía en poco tiempo nos dará una fuerza descomunal. Una ecuación relevante para este principio es

    $$P=\frac{\Delta E}{\Delta t}\\\mathrm{.} $$

    ¡De este conocimiento deducimos que la pendiente de una gráfica Energía-Tiempo es igual a la potencia! Recuerda que la pendiente es la tasa de cambio de \(y\) sobre la tasa de cambio de \(x\). Puesto que la energía es la \(y\) y el tiempo es la \(x\), al introducirlos en la ecuación de la pendiente se obtiene

    $$m=\frac{\Delta E}{\Delta t}\$$

    donde \(m\) es la pendiente. Ésa es la ecuación exacta de la potencia. Para ilustrar este principio, repasaremos a continuación la gráfica Energía-Tiempo.

    Gráfica Energía-Tiempo Curva Energía-Tiempo Pendiente Ejemplo StudySmarterFig. 6 - La pendiente de una Curva Energía-Tiempo es la potencia

    La Fig. 6 muestra que la pendiente de una Gráfica Energía-Tiempo es igual a la potencia. Para hallar la potencia de la función anterior de la energía con respecto al tiempo, sólo necesitamos hallar la pendiente:

    $$\begin{align*} m&=\frac{\felta y}{\felta x} m&=\frac{100,\mathrm{J}-0,\mathrm{J}}{1,\mathrm{s}-0,\mathrm{s}} = 100,\mathrm{\frac{J}{s} \\ m&=\text{Power}=100\,\mathrm{\frac{J}{s}.} |final{align*}$$

    Laenergía es igual al área bajo una Gráfica de Potencia vs. Tiempo porque la potencia es igual a la energía sobre el tiempo, por tanto, la energía es igual a la potencia por el tiempo:

    $$\Delta E = P\Delta t.$$

    Gráfica Energía Cinética vs. Tiempo y Movimiento Armónico Simple

    Ahora, es el momento de algunos ejemplos.

    Supongamos que el bloque del diagrama siguiente tiene una masa de \(m=2,00\,\mathrm{kg}\) y está diseñado para oscilar en el extremo de un muelle con una frecuencia \(f=20,0\,\mathrm{Hz}\) y una amplitud \(x_m = 50,0\,\mathrm{cm}\).

    Energía Tiempo Gráfico Bloque Oscilante Ejemplo StudySmarterFig. 7 - En \(x=0\), la energía potencial se convierte totalmente en energía cinética

    a) ¿Cuál es la energía mecánica total \(E\) del sistema muelle-bloque?

    b) ¿Cuál es la velocidad del bloque al pasar por la posición de equilibrio?

    Solución

    a) La energía mecánica depende de la constante del muelle y de la amplitud, y puede visualizarse con el gráfico siguiente.

    Energía Gráfica de Tiempo Energía Mecánica de Energía Gráfica de Tiempo StudySmarterFig. 8 - A amplitud máxima o mínima, toda la energía se almacena en potencial elástico. A \(0\), toda la energía del muelle se transfiere a energía cinética.

    En el ejemplo, se dan la frecuencia y la masa del bloque para que podamos calcular la constante del muelle mediante \(\omega ^2 = \frac{k}{m}\\\). Además, \(\omega \) depende de la frecuencia y es igual a \(\omega = 2\pi f\). Por tanto, podemos calcular

    $$(2\pi f)^2 =\frac{k}{m}\\$$

    $$4\pi ^2 f^2 = \frac{k}{2}\\$$

    para darnos una respuesta de

    $$k=8\pi ^2(20,0\,\mathrm{Hz})^2=3,16 \times 10^4 \,\mathrm{\frac{N}{m}\}mathrm{.}$$

    Ahora que hemos hallado la constante del muelle \(k\), podemos calcular la energía mecánica (¡sin olvidar convertir la amplitud en unidades de metros!):

    $$E=\frac{1}{2}\\ k x_m ^2 $$

    $$E=\frac{1}{2}\\(3.16\times 10^4 \,\mathrm{\frac{N}{m}\\})(0.500\,\mathrm{m})^2$$

    $$E=3,95 veces 10^3 \,\mathrm{J}\mathrm{.}$$

    b) Cuando el bloque pasa por la posición de equilibrio, su energía potencial se convierte en energía cinética. Por tanto, la energía mecánica será igual a la energía cinética:

    $$\frac{1}{2}\k x_m ^2 = \frac{1}{2}\ mv^2\mathrm{.}$$

    A partir de esa ecuación, podemos hallar la velocidad.:

    $$3.95\times 10^3 \,\mathrm{J}=\frac{1}{2}\\(2.00\,\mathrm{kg})v^2$$

    $$3,95 veces 10^3 μ,μmathrm{J}=v^2$$

    $$$3,95 veces 10^3 μmathrm{J}}=$$3,95 veces 10^3 μmathrm{J}}=$$$qrt{v^2}$$

    $$v=62.8\,\mathrm{\frac{m}{s}\\}\mathrm{.}$$

    ¡Fue todo un viaje en montaña rusa! Ha habido muchas idas y venidas, algunas subidas y bajadas, e incluso más paradas y caídas. Esperemos que a estas alturas no tengas náuseas de tanto frenesí físico y estés preparado para asimilar las claves esenciales de nuestro artículo sobre los Gráficos Energía-Tiempo.

    Gráfico Energía-Tiempo - Puntos clave

    • Los sistemas con estructura interna tienen energía potencial. Un sistema puede tener energía potencial si los objetos que lo componen interactúan con fuerzas conservativas.

    • Si cambia la composición del sistema, puede cambiar la energía potencial. Un ejemplo de ello son los osciladores masa-resorte.

    • En un sistema cerrado, la energía mecánica es constante durante la oscilación.

    • La energía mecánica es independiente del tiempo.

    • La energía mecánica depende de la amplitud y de la constante del muelle.

    • Las energías cinética y potencial dependen del tiempo y se convierten entre sí durante la oscilación.

    • Las energías cinética y potencial de un sistema constituyen la energía interna del sistema.

    • Como la energía es constante en un sistema cerrado, los cambios en la energía potencial de un sistema pueden dar lugar a cambios en la energía cinética del sistema.

    • No existe una aplicación real para el área bajo una Gráfica Energía-Tiempo.

    • La potencia es la pendiente de una Gráfica Energía-Tiempo.

    • Podemos utilizar las Gráficas Energía-Tiempo para modelizar la energía de un condensador.

    Preguntas frecuentes sobre Gráfico de Energía y Tiempo
    ¿Qué es un gráfico de energía y tiempo?
    Un gráfico de energía y tiempo muestra cómo la energía de un sistema cambia a lo largo del tiempo.
    ¿Qué información se puede obtener de un gráfico de energía y tiempo?
    Se puede observar cómo la energía total, cinética y potencial varían y la conservación de energía en el sistema.
    ¿Cómo se interpreta la pendiente en un gráfico de energía y tiempo?
    La pendiente de la curva indica la tasa de cambio de energía en el sistema; una pendiente pronunciada sugiere un cambio rápido.
    ¿Por qué es importante comprender los gráficos de energía y tiempo?
    Entender estos gráficos ayuda a analizar la dinámica y el comportamiento energético de sistemas físicos a lo largo del tiempo.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    Cuando el objeto está en la posición de equilibrio, toda su energía es cinética.

    Cuando el objeto está en la amplitud, toda su energía es potencial.

    Supongamos que un bloque está diseñado para oscilar en el extremo del muelle con una constante de muelle \(k = 0,50\) y con amplitud \(x_m=4,0 \,\texto m\).¿Cuál es la energía mecánica total del sistema muelle-bloque?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 14 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.