Pruebas No Paramétricas

Cuando se trata de estadística, hay muchas cosas que debemos tener en cuenta; sobre todo cuando se trata de determinar si utilizar pruebas paramétricas o no paramétricas. El objetivo último de los investigadores es utilizar pruebas paramétricas. Sin embargo, esto no siempre es posible. Y cuando es así, los investigadores utilizan pruebas no paramétricas.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué tipo de prueba estadística deben intentar utilizar los investigadores?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué medida utilizan las pruebas no paramétricas para medir el valor de tendencia central?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué tipo de error es más probable que se produzca en las pruebas no paramétricas?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de las siguientes no es una prueba no paramétrica?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Con qué tipo de datos se hacen las pruebas no paramétricas?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las pruebas no paramétricas suelen realizarse cuando un estudio se lleva a cabo con una muestra pequeña. ¿Verdadero o falso?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de una prueba t pareada?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de una prueba t no apareada?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de una prueba de correlación de Pearson?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de un ANOVA unidireccional?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de un ANOVA unidireccional de medidas repetidas?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué tipo de prueba estadística deben intentar utilizar los investigadores?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué medida utilizan las pruebas no paramétricas para medir el valor de tendencia central?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué tipo de error es más probable que se produzca en las pruebas no paramétricas?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de las siguientes no es una prueba no paramétrica?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Con qué tipo de datos se hacen las pruebas no paramétricas?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las pruebas no paramétricas suelen realizarse cuando un estudio se lleva a cabo con una muestra pequeña. ¿Verdadero o falso?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de una prueba t pareada?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de una prueba t no apareada?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de una prueba de correlación de Pearson?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de un ANOVA unidireccional?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es el equivalente no paramétrico de un ANOVA unidireccional de medidas repetidas?

Mostrar respuesta

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    • Empezaremos examinando el uso de las pruebas no paramétricas en psicología y la aplicación de las pruebas no paramétricas. Para asegurarnos de su comprensión, veremos a continuación ejemplos de pruebas no paramétricas.
    • A continuación, profundizaremos en los supuestos no paramétricos.
    • A continuación, exploraremos la diferencia entre pruebas paramétricas y no paramétricas.
    • Por último, veremos las ventajas e inconvenientes de las pruebas no paramétricas.

    Pruebas no paramétricas en Psicología

    Las pruebas no paramétricas se utilizan como alternativa cuando no se pueden realizar pruebas paramétricas.

    Las pruebas no paramétricas también se conocen como pruebas sin distribución. Son pruebas estadísticas que no requieren datos distribuidos normalmente.

    Las pruebas no paramétricas incluyen la de Kruskal-Wallis y la correlación de Spearman. Se utilizan cuando las pruebas paramétricas alternativas (por ejemplo,ANOVA unidireccional y correlación de Pearson) no pueden llevarse a cabo porque los datos no cumplen los supuestos requeridos.

    Aplicación de las pruebas no paramétricas

    Las pruebas noparamétricas determinan el valor de los puntos de datos asignando signos + o - en función de la clasificación de los datos. El proceso de análisis consiste en ordenar numéricamente los datos e identificar su número de clasificación.

    A los datos se les asigna un " +" si son mayores que el valor de referencia (donde se espera/hipótesis que caiga el valor) y un "-" si son menores que el valor de referencia. Estos datos clasificados se convierten en los puntos de datos para un análisis estadístico no paramétrico.

    Prueba no paramétrica: Ejemplos

    El conjunto de datos de ejemplo ilustra cómo se clasifican las pruebas no paramétricas:

    Conjunto de datos: 25, 16, 6, 16, 30. El valor de referencia previsto es 20.

    X1X2X3X4X5
    -6-16-16+25+30

    Los datos se clasifican numéricamente del más bajo (6) al más alto (30). Como hay dos casos del valor 16, a ambos se les asigna una clasificación de 2,5.

    El valor de referencia previsto es 20; por tanto, 25 y 30 tienen valores positivos, y el resto, negativos.

    No paramétrico: Supuestos

    Las pruebas no paramétricas son pruebas con menos restricciones que las paramétricas. Es apropiado utilizar pruebas no paramétricas en la investigación en distintos casos. Por ejemplo:

    • Cuando los datos son nominales , es decir, cuando se asignan a grupos; estos grupos son distintos y tienen similitudes limitadas (por ejemplo, las respuestas a "¿Cuál es tu origen étnico?")

    • Cuando los datos son ordinales , es decir, cuando tienen un orden o escala establecidos (p. ej., "Valora tu ira del 1 al 10").

    • Cuando hayvalores atípicos identificados en el conjunto de datos

    • Cuando los datos se recogen de una muestra pequeña

    Sin embargo, es importante señalar que las pruebas no paramétricas también se utilizan cuando se pueden asumir los siguientes criterios:

    • Al menos una violación de los supuestos de las pruebas paramétricas. Por ejemplo, los datos deben tener una homocedasticidad de varianza similar : la cantidad de "ruido" (posibles errores experimentales) debe ser similar en cada variable y entre los grupos.

    • Distribución no normal de los datos. En otras palabras, es probable que los datos estén sesgados.

    • Aleatoriedad: los datos deben tomarse de una muestra aleatoria de la población objetivo.

    • Independencia: los datos de cada participante en cada variable no deben estar correlacionados; esto significa que las mediciones de un participante no deben estar influidas ni asociadas con las de otros participantes.

    Diferencia entre pruebas paramétricas y no paramétricas

    La tabla siguiente muestra ejemplos de pruebas no paramétricas. Incluye su equivalente en pruebas paramétricas, el método de análisis de datos que utiliza la prueba y ejemplos de investigación adecuados para cada prueba estadística.

    Prueba no paramétricaPrueba paramétrica equivalenteFinalidad de la prueba estadísticaEjemplo
    Prueba de suma de rangos de WilcoxonPrueba t pareadaCompara el valor medio de dos variables obtenidas de los mismos participantesLa diferencia en las puntuaciones de depresión antes y después del tratamiento
    Prueba U de Mann-WhitneyPrueba t no emparejadaCompara el valor medio de una variable medida a partir de dos grupos independientesLa diferencia entre la gravedad de los síntomas de la depresión en un grupo de placebo y otro de terapia farmacológica
    Correlación de SpearmanCorrelación de PearsonMide la relación (fuerza/dirección) entre dos variablesLa relación entre las puntuaciones obtenidas en pruebas de aptitud física y el número de horas dedicadas a hacer ejercicio
    Prueba de Kruskal WallisAnálisis de varianza de una vía (ANOVA)Compara la media de dos o más grupos independientes (utiliza un diseño entre sujetos, y la variable independiente debe tener tres o más niveles)La diferencia en las puntuaciones medias de las pruebas de aptitud física de los individuos que hacen ejercicio con frecuencia, moderadamente o no lo hacen
    ANOVA de FriedmanANOVA de medidas repetidas de una víaCompara la media de dos o más grupos dependientes (utiliza un diseño dentro del sujeto, y la variable independiente debe tener tres o más niveles)La diferencia en las puntuaciones medias de las pruebas de aptitud física durante la mañana, la tarde y la noche

    Ventajas de las pruebas no paramétricas

    La investigación mediante pruebas no paramétricas tiene muchas ventajas:

    • El análisis estadístico utiliza cálculos basados en signos o rangos. Así, es poco probable que los valores atípicos del conjunto de datos afecten al análisis.

    • Se pueden utilizar incluso cuando el tamaño de la muestra de la investigación es pequeño.

    • Son menos restrictivas que las pruebas paramétricas, ya que no tienen que cumplir tantos criterios o supuestos. Por lo tanto, pueden aplicarse a datos en diversas situaciones.

    • Tienen más potencia estadística que las pruebas paramétricas cuando se incumplen los supuestos de éstas. Esto se debe a que utilizan la mediana para medir la tendencia central en lugar de la media. Es menos probable que los valores atípicos afecten a la mediana.

    • Muchas pruebas no paramétricas han sido un estándar en la investigación psicológica durante muchos años: la prueba ji-cuadrado, la prueba de probabilidad exacta de Fisher y la prueba de correlación de Spearman.

    Desventajas de las pruebas no paramétricas

    Las pruebas no paramétricas también tienen desventajas que debemos tener en cuenta:

    • La media se considera la mejor medida y una medida estándar de tendencia central porque utiliza todos los puntos de datos del conjunto de datos para el análisis. Si los valores de los datos cambian, la media calculada también cambiará. Sin embargo, esto no siempre ocurre cuando se calcula la mediana.

    • Como estas pruebas no suelen verse muy afectadas por los valores atípicos, aumenta la probabilidad de que la investigación cometa un error de Tipo 1 (esencialmente un "falso positivo", rechazar la hipótesis nula cuando debería aceptarse). Esto reduce la validez de las conclusiones.

    • Las pruebas no paramétricas se consideran apropiadas sólo para la comprobación de hipótesis, ya que no calculan ni estiman el tamaño de los efectos (un valor cuantitativo que te dice cuánto están relacionadas dos variables) ni los intervalos de confianza. Esto significa que los investigadores no pueden identificar en qué medida la variable independiente afecta a la variable dependiente ni en qué medida son significativos estos resultados. Por lo tanto, la utilidad de los resultados es limitada, y su validez también es difícil de establecer.

    Pruebas no paramétricas - Puntos clave

    • Las pruebas no paramétricas también se conocen como pruebas sin distribución. Son pruebas estadísticas que no requieren datos distribuidos normalmente.
    • Las pruebas no paramétricas determinan el valor de los puntos de datos asignando signos + o - en función de la clasificación de los datos. El proceso de análisis implica ordenar numéricamente los datos e identificar su número de rango. Estos datos ordenados se utilizan como puntos de datos para el análisis estadístico no paramétrico.
    • Ejemplos de pruebas no paramétricas son la prueba de suma de rangos de Wilcoxon, la prueba U de Mann-Whitney, la correlación de Spearman, la prueba de Kruskal Wallis y la prueba ANOVA de Friedman. Todas estas pruebas tienen pruebas paramétricas alternativas.

    • Las pruebas no paramétricas sólo se utilizan cuando se violan los supuestos de las pruebas paramétricas, debido a su naturaleza restrictiva. A pesar de ello, utilizar pruebas no paramétricas tiene sus ventajas.

    Preguntas frecuentes sobre Pruebas No Paramétricas
    ¿Qué son las pruebas no paramétricas en psicología?
    Las pruebas no paramétricas en psicología son métodos estadísticos que no asumen distribución normal en los datos.
    ¿Cuándo se utilizan las pruebas no paramétricas?
    Se utilizan cuando los datos no cumplen con los supuestos de normalidad o son medidos en escalas ordinales o nominales.
    ¿Cuáles son ejemplos de pruebas no paramétricas?
    Ejemplos incluyen la prueba de Mann-Whitney, la prueba de Wilcoxon y el test de Kruskal-Wallis.
    ¿Por qué elegir una prueba no paramétrica?
    Se eligen porque son menos sensibles a la desviación de suposiciones y funcionan con datos clasificatorios o de rango.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Qué tipo de prueba estadística deben intentar utilizar los investigadores?

    ¿Qué medida utilizan las pruebas no paramétricas para medir el valor de tendencia central?

    ¿Qué tipo de error es más probable que se produzca en las pruebas no paramétricas?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Psicología

    • Tiempo de lectura de 9 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.