Potencial Eléctrico Debido a una Carga Puntual

Tu profesor de física pasa revista a tu examen, con el ceño ligeramente fruncido. Te limpias el sudor de la frente mientras esperas ansiosamente aunque sea unas palabras de aliento. Te miran y dicen: "Bueno, puedes hacerlo mejor... tienes toneladas de potencial". Tu corazón se hunde y te alejas, abatido, mientras intentas deducir el significado de la palabra.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Para una carga puntual, ¿cómo se relaciona el potencial eléctrico \(V\) con la distancia \(r\) de la carga?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la unidad SI de medida del potencial eléctrico?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la magnitud media del campo eléctrico \(\left|\vec{E}\right||) entre dos puntos con respecto al cambio de potencial \(\Delta V\) y al cambio de posición entre esos puntos \(\Delta r?\)

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las isolíneas debidas a una carga puntual son siempre ___ las líneas de campo eléctrico de dicha carga.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

El trabajo lo realiza siempre la fuerza eléctrica a lo largo de una isolínea.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las líneas de campo eléctrico de un campo uniforme son paralelas entre sí.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué forma forman las isolíneas debidas a una carga puntual?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Dos puntos equidistantes de un punto de una isolínea, uno a lo largo de la isolínea y otro en una isolínea adyacente, tendrán el mismo potencial.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La energía potencial eléctrica entre un electrón y un protón es \(1,92 veces 10^{-16},\mathrm{J}.\) Calcula el potencial eléctrico \(V\) del electrón en la posición del protón suponiendo que ambos pueden tratarse como cargas puntuales.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La energía potencial eléctrica entre dos partículas cargadas es \(-2,4 veces 10^{-15},\mathrm{J}.\) La primera de las partículas cargadas tiene una carga de \(3,2 veces 10^{-19},\mathrm{C}.\}) Calcula el potencial eléctrico \(V\) debido a la primera partícula en la posición de la segunda, suponiendo que ambas pueden tratarse como cargas puntuales.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Calcula el potencial eléctrico \(V\) de una carga puntual \(2,0,\mathrm{\mu C}\) a una distancia de \(0,50,\mathrm{\cm}\) de la carga.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Para una carga puntual, ¿cómo se relaciona el potencial eléctrico \(V\) con la distancia \(r\) de la carga?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la unidad SI de medida del potencial eléctrico?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál es la magnitud media del campo eléctrico \(\left|\vec{E}\right||) entre dos puntos con respecto al cambio de potencial \(\Delta V\) y al cambio de posición entre esos puntos \(\Delta r?\)

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las isolíneas debidas a una carga puntual son siempre ___ las líneas de campo eléctrico de dicha carga.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

El trabajo lo realiza siempre la fuerza eléctrica a lo largo de una isolínea.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Las líneas de campo eléctrico de un campo uniforme son paralelas entre sí.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué forma forman las isolíneas debidas a una carga puntual?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Dos puntos equidistantes de un punto de una isolínea, uno a lo largo de la isolínea y otro en una isolínea adyacente, tendrán el mismo potencial.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La energía potencial eléctrica entre un electrón y un protón es \(1,92 veces 10^{-16},\mathrm{J}.\) Calcula el potencial eléctrico \(V\) del electrón en la posición del protón suponiendo que ambos pueden tratarse como cargas puntuales.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La energía potencial eléctrica entre dos partículas cargadas es \(-2,4 veces 10^{-15},\mathrm{J}.\) La primera de las partículas cargadas tiene una carga de \(3,2 veces 10^{-19},\mathrm{C}.\}) Calcula el potencial eléctrico \(V\) debido a la primera partícula en la posición de la segunda, suponiendo que ambas pueden tratarse como cargas puntuales.

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Calcula el potencial eléctrico \(V\) de una carga puntual \(2,0,\mathrm{\mu C}\) a una distancia de \(0,50,\mathrm{\cm}\) de la carga.

Mostrar respuesta

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Potencial Eléctrico Debido a una Carga Puntual

  • Tiempo de lectura de 13 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Al día siguiente, tu profesor de física trae un generador Van der Graaf, que pone los pelos de punta a tus compañeros cuando lo tocan. Te entusiasma la idea de impresionar a tu profesor y levantas la mano con entusiasmo cuando se requiere un nuevo voluntario. Después de que tu pelo también se ponga de punta, para diversión de tus compañeros, oyes las palabras mágicas de tu profesor: "¡Bien hecho! Has demostrado potencial". Ningún sonido más dulce podría haber entrado en tus oídos y vuelves a tu asiento satisfecho de haber expiado cualquier pecado relacionado con la física.

    Si supieras que el potencial al que se refería en realidad tu profesor era el potencial eléctrico... En este artículo hablaremos del potencial eléctrico debido a una carga puntual, para que no vuelvas a cometer este error.

    Definición del potencial eléctrico debido a una carga puntual

    Sabemos que, en realidad, las partículas cargadas como los protones y los iones tienen un tamaño definido y ocupan cierto volumen en el espacio. Puede que sea un valor minúsculo, pero existe. Para facilitar la comprensión en este artículo, vamos a suponer que todas las cargas ocupan un único punto en el espacio. Nos referiremos a estos objetos como cargas puntuales. Sabemos que cualquier partícula cargada tendrá un campo eléctrico, que no es diferente para las cargas puntuales. Las líneas de campo eléctrico de las cargas puntuales son radiales y apuntan hacia dentro o hacia fuera de la carga (según el signo de la carga). Necesitamos definir una nueva magnitud, el potencial eléctrico, y lo haremos específicamente para una carga puntual.

    El potencial eléctrico \(V\) en un punto del campo eléctrico de una carga puntual es el trabajo realizado \(W\) por unidad de carga positiva \(q\) al llevar una pequeña carga de prueba desde el infinito hasta ese punto.

    Podemos escribirlo matemáticamente como \[V=\frac{W}{q}.\] Los puntos adyacentes que tienen igual potencial eléctrico forman líneas equipotenciales, también llamadas isolíneas.

    Fórmula del potencial eléctrico debido a una carga puntual

    Si dos puntos se encuentran en la misma isolínea, no se realiza ningún trabajo al mover una partícula cargada entre esos puntos. Las isolíneas producidas por cargas puntuales forman círculos concéntricos centrados en la carga. Es evidente que el potencial \(V\) está relacionado con la distancia \(r\) de la carga \(q\). De hecho, \[V=\frac{1}{4\pi \varepsilon_0}\frac{q}{r},\}] donde \(\varepsilon_0) es una constante conocida como permitividad del espacio libre y tiene el valor \(\varepsilon_0 = 8,85 veces10^{-12},\mathrm{F\,m^{-1}}.\La unidad SI de medida del potencial es el voltio (V), que equivale al julio por culombio (J). En la Fig. 1 se muestra un gráfico del potencial debido frente a la distancia debido a una carga positiva y debido a una carga negativa.

    Potencial eléctrico debido a una carga puntual Gráfica de potencial vs distancia StudySmarterFig. 1 - Un gráfico del potencial eléctrico frente a la distancia muestra una relación inversa para una carga positiva y la curva se invierte sobre el eje de la distancia para una carga negativa.

    El gráfico adopta una forma hiperbólica que representa la caída del potencial a medida que aumenta la distancia. Se invierte respecto al eje de la distancia para una carga negativa. Esto puede verse en las expresiones matemáticas, primero para una carga positiva, \[V_{+}=\frac{1}{4\pi \varepsilon_0}\frac{+q}{r},\} y luego para una carga negativa, \[V_{-}=\frac{1}{4\pi \varepsilon_0}\frac{-q}{r},\}].

    También podemos relacionar el potencial eléctrico con la magnitud media del campo eléctrico \(\left|\vec{E}\right|\) de la siguiente manera, \[\left|\vec{E}\right|=\left|\frac{\Delta V}{\Delta r}\right|.\] La magnitud media del campo eléctrico entre dos puntos es igual a la magnitud del cambio de potencial eléctrico \(\Delta V\) dividida por el cambio de posición entre esos puntos \(\Delta r\) en el campo. El cambio de potencial \(\Delta V\) entre dos puntos también se denomina diferencia de potencial entre esos puntos.

    Derivación de la fórmula del potencial eléctrico debido a una carga puntual

    Podemos deducir la ecuación anterior considerando el ejemplo de dos cargas positivas \(q\) y \(Q\) separadas por una distancia \(r.\) Esto se representa en la Fig. 2 a continuación.

    Potencial eléctrico debido a una carga puntual Fuerza entre dos cargas StudySmarterFig. 2 - La fuerza eléctrica entre dos cargas puede utilizarse para hallar el potencial eléctrico debido a una de las cargas.

    La fuerza \(F_{qQ}\) que la carga \(q\) ejerce sobre \(Q\) es igual y opuesta a la fuerza \(F_{Qq}\) que la carga \(Q\) ejerce sobre \(q.\) Podemos llamar a la magnitud de esta fuerza \(F.\) Por la ley de Coulomb, \[F=\frac{1}{4\pi \varepsilon_0}\frac{qQ}{r^2},\] y la energía potencial eléctrica \(E_\mathrm{P}\) es igual al trabajo realizado \(W\) para llevar dos cargas a puntos en los que su separación es \(r,\) \[E_\mathrm{P}=W=\frac{1}{4\pi \varepsilon_0}\frac{qQ}{r}.\] La definición de potencial eléctrico nos dice que el trabajo realizado por unidad de carga al llevar la carga \(Q\) desde el infinito hasta una distancia \(r\) de la carga \(q\) viene dado por \[\begin{align}V&=\frac{W}{Q}\&=\frac{1}{{cancel{Q}} \cdot \frac{1}{4\pi \varepsilon_0} \frac{q\cancel{Q}}{r}\&=\frac{1}{4\pi \varepsilon_0}\frac{q}{r}, \end{align}\] que es la misma que la primera ecuación anterior.

    Diagrama del potencial eléctrico debido a una carga puntual

    Si tenemos un campo eléctrico uniforme, sabemos que las líneas de campo eléctrico serán paralelas entre sí y apuntarán en la misma dirección. Esa dirección vendrá determinada por el signo de la carga en la superficie del objeto que genera el potencial. La ecuación del potencial eléctrico nos dice que a diferentes distancias \(r\) de la superficie, habrá diferentes potenciales. Sin embargo, a lo largo de una línea paralela a la superficie, el potencial será constante, ya que todos los puntos de esa línea son equidistantes de la superficie. Estas líneas de potencial constante se denominan isolíneas y, para un campo uniforme, aparecen como en la Fig. 3 siguiente.

    Potencial eléctrico debido a una carga puntual Aislamientos de campo radial StudySmarterFig. 3 - Las líneas de campo para un campo eléctrico uniforme son paralelas entre sí. Las líneas equipotenciales o isolíneas también son paralelas entre sí, pero son perpendiculares a las líneas de campo en todo momento.

    Observa que las isolíneas son siempre perpendiculares a las líneas de campo. Esto es siempre necesario, ya que cualquier componente del campo eléctrico a lo largo de la dirección de una isolínea provocará una fuerza eléctrica sobre una carga a lo largo de esa línea. Se realizaría trabajo a lo largo de esa isolínea y el potencial no permanecería constante, lo que no puede ocurrir.

    La situación es distinta para una carga puntual. Las líneas de campo serían radiales, pero exigiríamos que las isolíneas fueran siempre perpendiculares a ellas. Por tanto, las isolíneas formarían círculos concéntricos centrados en la carga puntual \(q.\) La Fig. 4 muestra las líneas de campo y las isolíneas debidas a una carga puntual positiva.

    Potencial eléctrico debido a una carga puntual Línea de campo radial isolíneas StudySmarterFig. 4 - Las líneas de campo del campo eléctrico de una carga puntual positiva apuntan radialmente hacia fuera. Las isolíneas son siempre perpendiculares a las líneas de campo, por lo que forman círculos concéntricos centrados en la carga.

    Las isolíneas circulares significan que el potencial es constante a lo largo de una trayectoria circular de radio \(r\) que rodea a la carga puntual. Si pensamos de forma bastante clásica y suponemos que los electrones orbitan alrededor del núcleo de un átomo siguiendo una trayectoria circular, ésta sería la razón por la que el núcleo no trabaja sobre los electrones.

    Potencial eléctrico debido a una carga puntual: Ejemplos

    Ahora que hemos visto cómo varía el potencial eléctrico de una carga puntual con la distancia, podemos trabajar con algunos ejemplos relacionados con este concepto.

    Pregunta: La energía potencial eléctrica entre un electrón y un protón es \(9,6 veces 10^{-17},\mathrm{J}.\) Calcula el potencial eléctrico del electrón en la posición del protón suponiendo que ambos pueden tratarse como cargas puntuales.

    Responde: Recuerda que la carga de un protón es \(1,60 veces 10^{-19},\mathrm{C}.\) El potencial eléctrico \(V\) debido al electrón en la posición del protón es el trabajo realizado por unidad de carga al llevar al protón hasta ese punto en el campo eléctrico del electrón. \V&=frac{W}{Q}[4 pt]&=frac{9,6 veces 10^{-17}},{mathrm{J}}{1,60 veces 10^{-19}},{mathrm{C}}[4 pt] &=600,{mathrm{J,C^{-1}}[4 pt]&=600,{mathrm{V}. \fin]. El potencial eléctrico debido al electrón en la posición del protón es (600 V).

    Ahora podemos pasar a ejemplos un poco más complejos.

    Pregunta: Calcula el potencial eléctrico de una carga puntual \(2,0,\mathrm{nC}) a una distancia de \(0,50,\mathrm{cm}) de la carga.

    Responde: Podemos utilizar la ecuación que relaciona el potencial \(V\) con la distancia \(r,\) \[\begin{align} V&=\frac{1}{4\pi \varepsilon_0}\frac{q}{r}\\[2 pt]&=\frac{1}{4\pi \left(8.85\times10^{-12}\,\mathrm{F\,m^{-1}}\right)}\left(\frac{2.0 veces 10^{-9},{\}mathrm{C}}{0,50 veces 10^{-2},{\}mathrm{}}derecha)&=3,600,{\}mathrm{C,{\}}{\}mathrm{C,{\}}{\}mathrm{V}. \fin]. El potencial eléctrico de esta carga es \(3,600,\mathrm{V}), a una distancia de \(0,50,\mathrm{cm}) de la carga.

    Por último, podemos ver cómo una diferencia de potencial entre dos puntos afecta a la magnitud del campo eléctrico en esa región.

    Pregunta: Calcula la magnitud media del campo eléctrico entre dos puntos que tienen entre sí una diferencia de potencial de \(150\,\mathrm{V}), y están separados por una distancia de \(2,5\,\mathrm{cm}.\)

    Responde: Podemos utilizar la ecuación que relaciona la magnitud media del campo eléctrico \(\left|\vec{E}\right|) con el cambio de potencial con la posición \(\left|\frac{\Delta V}{\Delta r}\right|,\\}) \[\begin{align} \izquierda... vec... E... derecha... y = izquierda... frac... delta V... delta r... derecha... y = izquierda... frac... 150..., mathrm... V... 2...5\times 10^{-2}\,\mathrm{m}}\right|\\[4 pt]&=6.0\times 10^{3}\,\mathrm{V\,m^{-1}}.\end{align}\] El campo eléctrico tiene un valor medio de \(6,0 veces 10^{3},\mathrm{V\},m^{-1}}) entre los dos puntos.

    Potencial eléctrico debido a una carga puntual - Puntos clave

    • El potencial eléctrico \(V\) en un punto del campo eléctrico de una carga puntual es el trabajo realizado \(W\) por unidad de carga positiva \(q\) al llevar una pequeña carga de prueba desde el infinito hasta ese punto, \[V=\frac{W}{q}.\].
    • Para una carga puntual, el potencial \(V\) está relacionado con la distancia \(r\) desde la carga \(q\), \[V=\frac{1}{4\pi \varepsilon_0}\frac{q}{r}.\]
    • La unidad SI de medida del potencial es el \(\text{voltio, V.}\})
    • La magnitud media del campo eléctrico \(\left|\vec{E}\right||) entre dos puntos es igual a la magnitud del cambio de potencial eléctrico \(\Delta V\) dividida por el cambio de posición entre esos puntos \(\Delta r\) en el campo, \[\left|\vec{E}\right|=\left|\frac{Delta V}{\Delta r}\right||.\].
    • Las isolíneas son siempre perpendiculares a las líneas de campo.
    • La fuerza eléctrica no realiza ningún trabajo a lo largo de una isolínea.
    • Para un campo uniforme, las líneas de campo son paralelas entre sí y las isolíneas son paralelas entre sí pero perpendiculares a las líneas de campo.
    • Para el campo de una carga puntual, las líneas de campo son radiales y las isolíneas forman círculos concéntricos centrados en la carga.

    Referencias

    1. Fig. 1 - Un gráfico del potencial eléctrico frente a la distancia muestra una relación inversa para una carga positiva y la curva se invierte sobre el eje de la distancia para una carga negativa. Originales de StudySmarter
    2. Fig. 3 - Las líneas de campo de un campo eléctrico uniforme son paralelas entre sí. Las isolíneas o líneas equipotenciales también son paralelas entre sí, pero son perpendiculares a las líneas de campo en todo momento. Originales de StudySmarter
    3. Fig. 4 - Las líneas de campo del campo eléctrico de una carga puntual son radiales. Las isolíneas son siempre perpendiculares a las líneas de campo, por lo que forman círculos concéntricos centrados en la carga. Originales de StudySmarter
    4. Fig. 2 - La fuerza eléctrica entre dos cargas puede utilizarse para hallar el potencial eléctrico debido a una de las cargas, StudySmarter Originals
    Preguntas frecuentes sobre Potencial Eléctrico Debido a una Carga Puntual
    ¿Qué es el potencial eléctrico debido a una carga puntual?
    El potencial eléctrico debido a una carga puntual es la cantidad de trabajo necesario para mover una unidad de carga positiva desde el infinito hasta un punto en el campo eléctrico generado por esa carga.
    ¿Cómo se calcula el potencial eléctrico de una carga puntual?
    El potencial eléctrico de una carga puntual se calcula con la fórmula V = k * Q / r, donde k es la constante de Coulomb, Q es la carga y r es la distancia al punto donde se mide el potencial.
    ¿Cuál es la unidad del potencial eléctrico?
    La unidad del potencial eléctrico es el voltio (V), que se define como un joule por coulomb (J/C).
    ¿Qué relación hay entre potencial eléctrico y energía potencial?
    La relación entre potencial eléctrico y energía potencial es que la energía potencial (U) es el producto del potencial eléctrico (V) y la carga (q), es decir, U = V * q.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    Para una carga puntual, ¿cómo se relaciona el potencial eléctrico \(V\) con la distancia \(r\) de la carga?

    ¿Cuál es la unidad SI de medida del potencial eléctrico?

    ¿Cuál es la magnitud media del campo eléctrico \(\left|\vec{E}\right||) entre dos puntos con respecto al cambio de potencial \(\Delta V\) y al cambio de posición entre esos puntos \(\Delta r?\)

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Física

    • Tiempo de lectura de 13 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.