Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|
Ley de Ampere

Mira a tu alrededor: ¿cuántas cosas funcionan gracias a la corriente eléctrica? Desde un tostador hasta los nuevos vehículos híbridos funcionan gracias al flujo de electrones a través de un material. Este movimiento de electrones genera lo que conocemos como corriente y su unidad de medida es el amperio.

El nombre de esta unidad es en honor al físico francés André-Marie Ampère, quien, a partir de sus experimentos, estudió la relación que existe entre la corriente eléctrica y los campos magnéticos. Sus investigaciones ayudaron a formar las bases de la electrodinámica y a entender los fenómenos del electromagnetismo. La más importante de sus contribuciones fue la ley de Ampère.

El experimento de Ampère

Sabemos que un conductor de corriente produce un campo magnético y una fuerza. Pero ¿cómo calculamos esta fuerza y de qué depende? y ¿qué pasa si dos conductores portadores de corriente se colocan cerca el uno del otro? Por suerte para nosotros, el físico André-Marie Ampère —basandose en los experimentos de Oersted— descubrió por primera vez el fenómeno de una fuerza que actúa entre dos cables.

Posteriormente, estudió la fuerza que actúa sobre dos cables conductores de corriente al variar:

  • La corriente que los atraviesa.
  • El sentido de las corrientes.
  • La distancia entre los cables .
  • La longitud de los cables.

Así, Ampere comprobó que dos cables paralelos que transportan corriente en la misma dirección se atraen y se repelen, si las direcciones de la corriente que los atraviesa son opuestas. Y si los dos cables se colocan perpendiculares entre sí, la fuerza que actúa entre ellos será nula. Ampère, también, se dio cuenta de que la fuerza entre dos corrientes rectas y paralelas es inversamente proporcional a la distancia entre ellas, y proporcional a la intensidad de la corriente.

La unidad básica de la corriente recibió el nombre de Ampère en honor a su trabajo. Sus experimentos y trabajos en el campo del electromagnetismo condujeron a la formulación de la ley de Ampère.

¿Qué es la ley de Ampère?

La ley de Ampère describe la relación entre el flujo de corriente que pasa a través de una curva cerrada y el campo magnético que se crea alrededor de esta curva.

La integral de línea del campo magnético alrededor de una curva cerrada y orientada, \( C\), es igual a la permeabilidad del vacío por la corriente neta \( I_c\) que pasa a través del área encerrada por \( C\).

La ley de Ampère también nos ayuda a entender la fuerza de atracción o repulsión entre dos cables conductores de corriente.

Si la dirección del flujo de la corriente es la misma en ambos cables, la fuerza es atractiva. Si la corriente fluye en direcciones opuestas, la fuerza es repulsiva. La dirección del campo magnético producido por la corriente en cada cable se puede visualizar usando diferentes métodos conocidos como reglas nemotécnicas. ¡Veamos algunas de ellas!

Regla de la mano derecha

La regla de la mano derecha establece que si se sujeta un conductor portador de corriente con el pulgar apuntando hacia el flujo de corriente, la dirección en la que se curvan los dedos representará el campo magnético que lo rodea.

Regla de la mano izquierda de Fleming

Esta regla establece que si estiramos el pulgar, el dedo medio y el dedo índice de la mano izquierda, entre el pulgar y e índice se formará un ángulo de 90 grados. Entonces, el pulgar apuntará en la dirección de la fuerza inducida \( (F)\), el dedo medio apuntará en la dirección de la corriente \( (I)\) y el dedo índice representará la dirección del campo magnético \( (B)\).

Fórmula de la ley de Ampère

Para derivar la ley de Ampère podemos utilizar la ley de Biot-Savart.

La ley de Biot-Savart describe el campo magnético creado por corrientes eléctricas estacionarias.

\[ \vec{\textbf{B}}(\vec{\textbf{r}})= \dfrac{\mu_0}{4\pi} \int_C \dfrac{I\vec{d \ell} \times\vec{\textbf{r}'}}{|\vec{\textbf{r}'}|^3}\]

Donde:

\( \ell \) es un punto en la curva cerrada \( C\).

\( \vec{d\ell} \) es un vector que viaja a lo largo de \( C \).

\( \mu_0\) es la permeabilidad del vacío.

\( \vec{\textbf{r}'}\) es el vector de desplazamiento desde \( \vec{d\ell} \) al punto \( \ell \).

Consideremos el caso de un cable conductor muy largo y recto:

Para este caso, la ley de Biot-Savart nos dice que el campo magnético generado por la corriente que pasa a través del cable se puede calcular con la siguiente expresión:\[ B= \dfrac{\mu_0 I}{2\pi r}\]

Dado que \( \vec{B}\) y \( \vec{d\ell} \) tienen la misma dirección, el producto punto entre ellos es igual al producto de sus magnitudes.

\[ \vec{B} \cdot \vec{d\ell}= |B||d\ell| cos( 0)= B\cdot d\ell\]

Podemos calcular el flujo de campo magnético en la curva usando la siguiente integral:

\[ \oint_C \vec{B} \cdot \vec{d\ell}\]

Sustituyendo, el resultado del producto punto:

\[ \oint_C \vec{B} \cdot \vec{d\ell}=\oint_C B \cdot d\ell\]

Por la ley de Biot-Savart, conocemos el valor del campo que se genera en el cable:

\[ \oint_C \vec{B} \cdot \vec{d\ell}=\dfrac{\mu_0 I}{2 \pi r} \oint_C d\ell\]

La curva cerrada es un círculo de radio \( r\); por lo tanto, la integral de un segmento a lo largo de esta curva es igual al valor de la circunferencia:

\[ \oint_C \vec{B} \cdot \vec{d\ell}=\dfrac{\mu_0 I}{2 \pi r} (2\pi r)\]

Finalmente, simplificamos y obtenemos la siguiente ecuación:

\[ \oint_C \vec{B} \cdot \vec{d\ell}=\mu_0 I\]

A esta ecuación se le conoce como ley de Ampère.

Ejercicios de la ley de Ampère

Dado que hay cientos de curvas cerradas, también hay cientos de ejercicios en los que podemos utilizar la ley de Ampère. Veamos uno de los ejemplos más usuales en las clases de electromagnetismo:

Calcula la magnitud del campo magnético en una curva circular de radio de \(3 \,m\), producido por un cable recto por el que pasa una corriente de \(2 \, A\).

Solución:

Recuerda la ley de Ampère:

\[ \oint_C \vec{B} \cdot \vec{d\ell}=\mu_0 I\]

Considera que el campo y el vector que viaja a lo largo de C tienen la misma dirección:

\[B \oint_C d\ell=\mu_0 I\]

Para el caso de un cable recto, se cumple la siguiente ecuación:

\[\oint_C d\ell=2\pi R\]

Sustituyendo en la fórmula de la ley de Ampère y despejando \(B\), obtienes:

\[B =\dfrac{\mu_0 I}{2\pi R}\]

Finalmente, puedes sustituir \(R=3 \,m \), \(I=2 \,A \) y \(\mu_0=4\pi \times 10^{-7} \, \frac{N}{A^2} \)

\[B =\dfrac{4\pi \times 10^{-7}(2 A)}{2\pi(3)}=1,3 \times 10^{-7}\]

El procedimiento para calcular el campo magnético que pasa a través de cualquier curva cerrada es muy parecido al ejemplo anterior: las variantes van a depender de la geometría de la curva, del número de vueltas que tengamos, de la intensidad de corriente y del punto donde calculemos el campo.

Aplicaciones de la ley de Ampère

Todos los componentes que funcionan con electricidad se basan en principios relacionados con la corriente y los campos magnéticos que se producen. Por eso, la ley de Ampère se aplica en muchas áreas de nuestra vida diaria y de campos científicos:

  • Por ejemplo, en la fabricación de motores, transformadores y generadores, que son fundamentales para que podamos tener electricidad en casa.
  • Otro ejemplo, son las bobinas toroidales que se usan en los aceleradores de partículas. Utilizando la ley de Ampère se puede calcular el campo magnético dentro, sobre y fuera de las bobinas. Esto permite estudiar el campo magnético ideal, para modificar las trayectorias de las partículas que pasan por el acelerador.
  • También, el estudio de la distribución del campo magnético dentro de los solenoides, nos permite configurar válvulas que ajustan el flujo de líquidos y gases en una amplia gama de dispositivos operados eléctricamente. Los solenoides se encuentran un muchos mecanismos que empleamos día con día, y su uso no podría ser posible sin la ley de Ampère.

Ley de Ampère - Puntos clave

  • El físico André-Marie Ampère estudio la relación que existe entre la corriente eléctrica y los campos magnéticos.
  • La ley de Ampère describe que la integral de línea de un campo magnético a través de una curva cerrada es igual a la distribución de corriente que pasa por la curva.
  • Podemos derivar la ley de Ampère desde la ley de Biot-Savart.
  • La ley de Ampère es el análogo magnético a la ley de Gauss en la electrostática.
  • Ampère se dio cuenta de que la fuerza entre dos corrientes rectas y paralelas es inversamente proporcional a la distancia entre ellas, y proporcional a la intensidad de la corriente.
  • Existen reglas nemotécnicas, como la regla de la mano derecha, que nos permiten conocer la dirección del campo magnético producido por una corriente.

Preguntas frecuentes sobre Ley de Ampere

La ley de Ampère describe la relación entre el flujo de corriente que pasa a través de una curva cerrada y el campo magnético que se crea alrededor de esta curva:


"La integral de línea del campo magnético alrededor de una curva cerrada y orientada C, es igual a la permeabilidad del vacío por la corriente neta Ic que pasa a través del área encerrada por C"

Cuando las corrientes son estables y no tengamos materiales magnéticos o campos eléctricos que varíen con el tiempo.

Usando la ley de Biot-Savart para un cable recto y largo.

El físico André-Marie Ampère.

El físico André-Marie Ampère, basado en los experimentos de Oersted, descubrió por primera vez el fenómeno de una fuerza que actúa entre dos cables. A partir de estos experimentos, demostró la relación que existe entre la corriente eléctrica y los campos magnéticos. 

Cuestionario final de Ley de Ampere

Pregunta

¿Qué describe la ley de Ampère?

Mostrar respuesta

Answer

La relación entre el flujo de corriente que pasa a través de una curva cerrada y el campo magnético que se crea alrededor de esta curva.

Show question

Pregunta

¿Qué podemos usar para derivar la ley de Ampère?

Mostrar respuesta

Answer

Ley de Biot-Savart.

Show question

Pregunta

¿Cuándo se aplica la ley de Ampère?

Mostrar respuesta

Answer

Cuando las corrientes son estables y no tengamos materiales magnéticos o campos eléctricos que varíen con el tiempo.

Show question

Pregunta

¿Quién formuló la ley de Ampère? 

Mostrar respuesta

Answer

 André-Marie Ampère.

Show question

Pregunta

¿Cómo se descubrió la ley de Ampère?

Mostrar respuesta

Answer

El físico André-Marie Ampère, basándose en los experimentos de Oersted, descubrió por primera vez el fenómeno de una fuerza que actúa entre dos cables. A partir de estos experimentos, demostró la relación que existe entre la corriente eléctrica y los campos magnéticos. 

Show question

Pregunta

¿Dónde podemos aplicar la ley de Ampère?

Mostrar respuesta

Answer

La ley de Ampère se aplica en muchas áreas de nuestra vida diaria. Por ejemplo, en la fabricación de motores, transformadores y generadores que son vitales para que podamos tener electricidad en casa. 

Show question

Pregunta

¿Cuál es un ejemplo de regla nemotécnica?

Mostrar respuesta

Answer

Regla de las dos manos.

Show question

Pregunta

La ley de Biot-Savart describe el ________ creado por _______ estacionarias.

Mostrar respuesta

Answer

Campo magnético; corrientes eléctricas.

Show question

Pregunta

¿Verdadero o falso?: La unidad de medida de la corriente es el Amperio (A).

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

¿Qué ocurre cuando una corriente eléctrica  pasa por un conductor?

Mostrar respuesta

Answer

Se produce un campo magnético y una fuerza.

Show question

Pregunta

¿Qué variaba en los experimentos de Ampère?

Mostrar respuesta

Answer

  • La corriente que atraviesa los cables.
  • El sentido de las corrientes.
  • La distancia entre los cables.  
  • La longitud de los cables.


Show question

Pregunta

Si dos cables paralelos transportan corriente en la misma dirección...

Mostrar respuesta

Answer

Se atraen.

Show question

Pregunta

Si dos cables paralelos transportan corriente en direcciones opuestas...

Mostrar respuesta

Answer

Se repelen.

Show question

60%

de los usuarios no aprueban el cuestionario de Ley de Ampere... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.