La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
Todos conocemos la ley de la conservación de la energía. Según esta ley, la energía no puede crearse ni destruirse. En cambio, puede transformarse de una forma a otra. Esta ley también se aplica a la electricidad y a los circuitos eléctricos. Veamos qué significa esto, además de algunos aspectos importantes de los circuitos.La ley de conservación de la energía establece que…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenTodos conocemos la ley de la conservación de la energía. Según esta ley, la energía no puede crearse ni destruirse. En cambio, puede transformarse de una forma a otra. Esta ley también se aplica a la electricidad y a los circuitos eléctricos. Veamos qué significa esto, además de algunos aspectos importantes de los circuitos.
La ley de conservación de la energía establece que la energía no se crea ni se destruye, sino que solo puede transformarse o transferirse de una forma a otra.
En otras palabras, la ley establece que la energía total de un sistema aislado permanece constante y se conserva en el tiempo.
La energía eléctrica es la energía derivada del movimiento de los electrones. La energía eléctrica puede considerarse como la energía convertida a partir de un potencial eléctrico, pues resulta de la energía potencial eléctrica y de la corriente eléctrica por tiempo.
Esta es la ecuación de la energía eléctrica:
\[E=P\cdot t,\]
Donde:
Si tienes diferentes variables, puedes utilizar la siguiente ecuación:
\[P=V\cdot I,\]
Donde:
Por la ley de Ohm sabes que, para calcular el voltaje, usas \(V = I\cdot R\). Si combinamos estas ecuaciones, tenemos las variaciones para la ecuación de la energía eléctrica:
\[ \begin{aligned}E&=V\cdot I \cdot I \\ &= I^2 \cdot R \cdot t \\ &=\dfrac{V^2 \cdot t}{R}\end{aligned}\]
Donde:
En 1845, Gustav Robert Kirchhoff, un físico alemán, propuso dos leyes que explican la conservación de la energía en los circuitos eléctricos. Mientras que la primera ley de Kirchhoff se aplica a las corrientes en un cruce de un circuito, la segunda ley de Kirchhoff se aplica a los voltajes en cualquier bucle completo de un circuito.
Las dos leyes de Kirchhoff se pueden expresar mediante fórmulas matemáticas. Veamos cuáles son y que expresan.
La primera ley de Kirchhoff se aplica a las corrientes en un nodo o unión. Afirma que la suma de las corrientes que entran en un nodo en un circuito eléctrico es igual a la suma de las corrientes que salen del nodo.
Fig. 1: Ejemplo de diagrama de corrientes en un nodo.
Observa el diagrama anterior: puedes ver tres corrientes \(I_1\), \(I_2\), \(I_3\) fluyendo hacia el nodo, y dos corrientes \(I_4\), \(I_5\) fluyendo fuera del nodo. En este ejemplo, la suma de las corrientes que entran será igual a las corrientes que salen, lo que se muestra en la siguiente ecuación:
\[I_1+I_2+I_3=I_4+I_5 \]
También se planteó esta ley de otra manera:
En cualquier momento, la suma algebraica de las corrientes que entran en el nodo y las corrientes que salen del nodo será siempre igual a cero.
Normalmente, las corrientes que entran en el nodo se toman como negativas y las que salen del nodo se toman como positivas. Fíjate en la siguiente ecuación:
\[I_4+I_5-I_1-I_2-I_3=0 \]
Como puedes ver, las corrientes existentes no se pierden, sino que son iguales a las corrientes que salen del nodo.
Veamos el siguiente ejemplo:
Para los valores dados de las corrientes en el diagrama de abajo, encuentra \(I_2\) utilizando la primera ley de Kirchhoff.
Fig. 2: Ejemplo de corrientes entrando y saliendo del nodo.
Solución:
Simplemente, tienes que aplicar la primera ley de Kirchhoff a los valores de la corriente:
\[I_2+3\, \, \mathrm{A}-2\, \, \mathrm{A}-5\, \, \mathrm{A}-4\, \, \mathrm{A}=0\ \rightarrow \ I_2=8\, \, \mathrm{A}\]
La segunda ley de Kirchhoff se aplica a los voltajes en cualquier bucle completo dentro de un circuito. Esta ley establece que en cualquier bucle cerrado de un circuito, la suma algebraica de los voltajes es igual a cero para cualquier intervalo de tiempo.
Fig. 3: Ejemplo de diagrama de voltaje en un bucle cerrado.
¡Importante! Puedes decidir la dirección del bucle; pero, normalmente, este sentido se selecciona en función de la dirección de la corriente en el bucle.
Una vez que hayas decidido la dirección del bucle, tienes que determinar los polos positivos y negativos de cada componente, excepto las fuentes. El punto donde la corriente entra en el componente es el lado positivo, por lo que el otro lado será el negativo. A partir de ahí, puedes derivar la siguiente ecuación:
\[V_{R1}+V_{R2}-V=0\]
Como puedes ver en esta ecuación, el signo del voltaje depende de la dirección del bucle y de los polos del componente:
Veamos un ejemplo:
Para el circuito que se muestra a continuación, encuentra el valor de \(V_2\) utilizando la segunda ley de Kirchhoff.
Fig. 4: Diagrama de voltajes en un circuito cerrado que muestra la conservación del voltaje.
Solución 1:
En primer lugar, tienes que decidir una dirección para el bucle. En el diagrama, puedes ver los polos negativos y positivos de cada componente, según la dirección de la corriente.
Ahora, puedes emplear la ecuación poniendo los positivos como aquellos en los que la corriente entró por el lado positivo y los negativos como aquellos en los que la corriente entró por el lado negativo:
\[V_{R1}+V_{R2}+V_{R3}-V_{1}-V_{2}=0 \]
Si pones las variables dadas en el enunciado en la ecuación, obtendrás:
\[5\, \, \mathrm{V}+5\, \, \mathrm{V}+5\, \, \mathrm{V}-5\, \, \mathrm{V}-V_2=0\]
A partir de aquí se puede encontrar, simplemente, el valor de \(V_2\) como \(10\, \, \mathrm{V}\).
Solución 2:
Hemos mencionado que puedes elegir el sentido del bucle, así que vamos a ver qué ocurre si elegimos el sentido contrario para el bucle.
Fig. 5: En este diagrama se analiza el voltaje siguiendo la dirección contraria a las manecillas del reloj.
Para ver cómo cambia la ecuación según la dirección del bucle, mira la ecuación de abajo:
\[-V_{R1}-V_{R2}-V_{R3}+V_1+V_2=0\]
Ahora que la dirección del bucle entra primero en los lados negativos de las resistencias, sus valores de voltaje se toman como valores negativos (y como lo contrario de las fuentes de voltaje).
Pon los valores dados en la ecuación:
\[ -5 \, \, \mathrm{V} -5 \, \, \mathrm{V}-5 \, \, \mathrm{V}+5 \, \, \mathrm{V}+V_2=0\]
\[V_2=10 \, \, \mathrm{V}\]
Como puedes ver, es posible elegir el sentido que quieras para el bucle, y el resultado será el mismo.
En otras palabras: la energía eléctrica se conserva porque el valor total del voltaje que proporcionan las fuentes es igual al valor del voltaje que utilizan las resistencias.
La potencia eléctrica es la velocidad a la cual se transfiere energía eléctrica en un circuito por unidad de tiempo.
\[P=V\cdot I.\]Si, además, estamos considerando un circuito con resistencias, la fórmula anterior puede reescribirse definiendo el voltaje en términos de la resistencia eléctrica \(R\) del circuito:
\[P=(I\cdot R)\cdot I= I^2 \cdot R.\]
¡Veamos el siguiente ejemplo!
Calcula la potencia de un circuito con un voltaje de \(24 \, \, \mathrm{V}\) y una corriente de \(10\, \, \mathrm{mA}\).
Solución:
Comienza recordando la fórmula de la potencia eléctrica.
\[P=V\cdot I\]
Ahora, podrás sustituir los valores dados:
\[P=24 \cdot 0,01=0,24 \, \, \mathrm{W}\]
La ley de conservación de la energía establece que la energía no se crea ni se destruye; solo se transforma o transfiere de una forma a otra.
La energía eléctrica es la energía derivada del movimiento de los electrones.
Son dos leyes que explican la conservación de la energía en los circuitos eléctricos:
Según la primera ley de Kirchhoff, la suma de las corrientes que entran en un nodo de un circuito eléctrico es igual a la corriente total que sale del nodo.
La segunda ley de Kirchhoff se aplica a los voltajes en cualquier bucle completo de un circuito.
de los usuarios no aprueban el cuestionario de Potencia eléctrica... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.