Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

Ley de Faraday-Lenz

Ley de Faraday-Lenz

¿Sabías que el tren más rápido del mundo puede alcanzar una velocidad máxima de \(431\,\mathrm{km/h}\)? Eso es casi tan rápido como un avión que vuela entre países y cuatro veces más rápido que un guepardo, ¡el animal más rápido del mundo! Este tren se encuentra en Shanghai, China, y se llama Tren transrápido de Shanghai. Puede llevar a los pasajeros que aterrizan en el aeropuerto de Shanghai al centro de la ciudad en unos 8 minutos, por lo que apenas da tiempo a comer algo ligero después del vuelo.

Pero, ¿cómo alcanza este tren tales velocidades, cuando los trenes normales únicamente viajan a unos \(200\,\mathrm{km/h}\)? El secreto de la tecnología es la levitación magnética. Debido a la interacción entre los campos eléctrico y magnético, la levitación se produce cuando el tren y las vías generan fuerzas magnéticas opuestas. Esta interacción electromagnética se puede entender mediante la Ley de Faraday; ¡sigue leyendo para saber más!

Ley de Faraday-Lenz Tren de levitación magnética StudySmarterFig. 1 : Los trenes de levitación magnética, como el Transrapid de Shanghai, también se conocen como trenes maglev (magnetic levitation).

Inducción electromagnética

Antes de definir la Ley de Faraday-Lenz, debemos comprender el concepto de inducción electromagnética.

La inducción electromagnética es la formación de una fuerza electromotriz, o FEM, debida al movimiento de un campo electromagnético cerca de un conductor eléctrico.

Veamos un caso:

Un ejemplo familiar del uso de la inducción electromagnética son los cargadores inalámbricos de teléfonos. Al colocar el teléfono encima de la placa del cargador, el teléfono sigue recibiendo energía, a pesar de no estar enchufado. Esto se debe a que la placa emite campos electromagnéticos alternos. Como resultado, estos campos interactúan con el conductor eléctrico del interior de tu teléfono, induciendo una FEM, ¡que luego carga tu teléfono!

Fórmula de la ley de Faraday-Lenz

La ley de Faraday-Lenz nos dice exactamente el valor de la fuerza electromotriz inducida por el movimiento de los campos electromagnéticos.

La ley de Faraday-Lenz establece que la fuerza electromotriz inducida es proporcional a la velocidad de cambio del flujo magnético en el campo (electro)magnético.

Fuerza electromotriz

Podemos calcular la fuerza electromotriz inducida en un conductor de superficie constante mediante

\[\epsilon=-\dfrac{\Delta \phi_B}{\Delta t},\]

Donde:

  • \(\epsilon\) es la fuerza electromotriz inducida medida en voltios (\(\mathrm{V}\)).
  • \(\Delta \phi_B \) es el cambio de flujo magnético medido en webers (\(\mathrm{Wb}\)).
  • \(\Delta t\) es el cambio en el tiempo medido en segundos (\(\mathrm{s}\)).

En este caso, nuestro \(\Delta \phi_B \) se debe a que tenemos un campo magnético cambiante a lo largo del tiempo.

Por otra parte, la inducción electromagnética también puede conseguirse con una fuerza electromotriz constante, pero una superficie cambiante. En este caso, nuestro \(\Delta \phi_B \) se debe a la superficie cambiante en lugar de a un campo cambiante.

Nos extenderemos sobre el flujo magnético en el siguiente apartado.

Ley de Lenz

Observa que el signo negativo de la parte derecha de la ecuación se debe al efecto de la Ley de Lenz.

La Ley de Lenz establece que la dirección de la corriente inducida es contraria al movimiento que la provoca.

Esto es una consecuencia directa de la conservación de la energía. De lo contrario, ¡podríamos estar generando una corriente infinita al mover un imán cerca de una bobina!

Flujo magnético

Profundicemos un poco más en el flujo magnético que hemos mencionado antes.

El flujo magnético es la componente perpendicular de un campo magnético que atraviesa un área.

Podemos definirlo matemáticamente como:

\[\phi_B=\vec{B}\cdot \vec{A}.\]

O, alternativamente, podemos reescribir el producto escalar como:

\[\phi_B=|\vec{B}|\cdot|\vec{A}|\cdot\cos(\theta),\]

Donde:

  • \(\phi_B\) es el flujo magnético, medido en webers (\(\mathrm{Wb}\)).
  • \(\vec{B}\) es la intensidad del campo magnético, medida en teslas (\(\mathrm{T}\)).
  • \(\vec{A}\) es la superficie medida en \(\mathrm{m^2}\).
  • \(\theta\) es el ángulo entre la dirección del campo magnético y la superficie atravesada.

Podemos visualizar el flujo magnético en el siguiente diagrama:

Ley de Faraday-Lenz Líneas de flujo StudySmarterFig. 2: Las líneas de campo magnético (rosa) que atraviesan una zona (azul) generan un flujo magnético.

En el diagrama, las líneas rosas representan las líneas de campo magnético que pasan a través de un área, denotada por el rectángulo azul. Aquí, las líneas son perpendiculares a la superficie que atraviesan, por lo que sabemos que el ángulo entre el campo y la superficie es \(\pi/2\,\mathrm{rad}\). Por tanto, podemos establecer que, al calcular el flujo magnético, tenemos en cuenta la intensidad total del campo \(B\), ya que la componente angular es \(\cos(\pi/2)=1\).

Suponiendo que el campo magnético de la Figura 2 tiene una intensidad de campo magnético de \(B=2,5\,\mathrm{mT}\) y que el área de la superficie rectangular es \(6\,\mathrm{m^2}\), ¿cuál es el flujo magnético total a través de la superficie?

Solución:

Utilizando nuestra ecuación para \(\phi_B\), encontramos que:

\[\phi_B=2,5\cdot 10^{-3}\,\mathrm{T}\cdot 6\,\mathrm{m^2}\cdot\cos\left(\frac{\pi}{2}\right)=1,5\cdot 10^{-2}\,\mathrm{Wb}.\]

Ley de Faraday-Lenz en una bobina

Ahora que hemos establecido cómo funciona la ley de Faraday para un conductor general, estudiaremos un caso específico en el que se utiliza la ley: las bobinas de un solenoide. Al calcular la cantidad de fuerza electromotriz inducida en una bobina, debemos tener en cuenta el número de espiras presentes en la bobina, por lo que nuestra ecuación se convierte ahora en:

\[\epsilon=-N\dfrac{\Delta \phi}{\Delta t},\]

Donde \(N\) es el número de espiras de la bobina y todas las demás cantidades permanecen invariables.

Consideremos un ejemplo de un imán inmóvil junto a una bobina de cobre.

Ley de Faraday-Lenz Bobina junto a un imán StudySmarterFig. 3: Las líneas de campo del imán atraviesan la bobina conductora. Pero, como no hay movimiento relativo, no se induce ningúna FEM.

Como podemos ver en la figura anterior, las líneas de campo magnético comienzan en el polo norte del imán y terminan en el polo sur. La figura muestra que las líneas de campo del imán se cruzan con la estructura de la bobina conductora.

Sin embargo, como el imán está inmóvil, también lo están las líneas de campo. Esto hace que no se produzca inducción, ya que no hay movimiento relativo entre el campo magnético y el conductor. En su lugar, consideremos que el imán se mueve a través de la bobina.

Ley de Faraday-Lenz Imán moviéndose en una bobina StudysmarterFig. 4: Existe un movimiento relativo entre la bobina y las líneas de campo, lo que da lugar a una FEM inducida.

A medida que el imán se desplaza por la bobina, las líneas de campo vuelven a intersecarse con la estructura de la bobina magnética, pero esta vez se produce un cambio general en el flujo magnético.

Este cambio en el flujo magnético se debe al movimiento relativo entre la bobina y las líneas de campo, induciendo una fuerza electromotriz en la bobina conductora. Podemos deducir que se ha inducido una fuerza electromotriz, debido a la lectura del amperímetro conectado a la bobina que revela que ahora hay una corriente en la bobina.

Veámoslo con un ejemplo:

Ahora, sustituyamos algunos números para calcular cuánta FEM se está induciendo.

Si el imán tarda \(10\,\mathrm{s}\) en recorrer la bobina, lo que corresponde a un cambio en el flujo magnético de \(\Delta \phi=3,5\,\mathrm{mWb}\), ¿cuánta fuerza electromotriz se está induciendo en la bobina?

Solución:

A partir del diagrama, podemos contar que la bobina está formada por \(N=7\) espiras. Por tanto, podemos introducir estos números en nuestra ecuación del solenoide para la ley de Faraday-Lenz para una bobina y obtener:

\[\epsilon=-7\cdot\frac{3,5\cdot 10^{-3}\,\mathrm{Wb}}{10\,\mathrm{s}}=-2\cdot10^{-3}\,\mathrm{V}=-2\,\mathrm{mV}\]

Ley de Faraday-Lenz en los transformadores

¿Has pensado alguna vez cómo las grandes redes eléctricas suministran electricidad a toda una ciudad? ¡Estas centrales producen una tensión media de salida de \(500.000\,\mathrm{V}\) !

A modo de comparación, un hervidor eléctrico medio de los que se utilizan para hacer té sólo utiliza \(240\,\mathrm{V}\).

Entonces, ¿cómo nos aseguramos de que la tensión que llega a los hogares sea lo suficientemente baja como para garantizar la seguridad de nuestros aparatos? Para esto utilizamos transformadores.

Los transformadores nos permiten cambiar la magnitud de las tensiones que viajan a través de las líneas eléctricas, mediante el proceso de inducción electromagnética.

Además, podemos tener transformadores elevadores; es decir, que aumentan la tensión. O transformadores reductores; es decir, que la disminuyen. Consideremos el caso de un transformador elevador en la figura siguiente:

Ley de Faraday-Lenz Transformador StudysmarterFig. 5: Los transformadores permiten transformar tensiones menores en tensiones mayores, y viceversa.

En el lado izquierdo, tenemos la bobina primaria con \(N_{in}=4\) espiras.

Mediante una corriente alterna con tensión \(V_{in}\) , la bobina genera un campo magnético alterno.

Este campo alterno interactúa con la bobina secundaria del lado derecho, con \(N_{out}=8\) espiras.

Por inducción electromagnética, el campo genera una corriente en la bobina secundaria de diferente intensidad.

Esto puede calcularse utilizando la versión solenoide de la ley de Faraday:

\[V_{in}=-N_{in}\frac{\Delta \phi_p}{\Delta t}\]

para la bobina primaria.

Aquí:

  • \(V_{in}\) es la tensión en la bobina primaria medida en voltios (\(\mathrm{V}\).
  • \(\Delta \phi_p\) es el cambio en el flujo magnético a través de la bobina primaria.
  • \(N_{in}\) es el número de espiras de la bobina primaria.

Para la bobina secundaria

\[V_{out}=-N_{out}\frac{\Delta \phi_s}{\Delta t},\]

Donde:

  • \(V_{out}\) es la tensión inducida en la bobina secundaria medida en voltios (\(\mathrm{V}\)).
  • \(\Delta \phi_s\) es la variación del flujo magnético a través de la bobina secundaria.
  • \(N_{out}\) es el número de espiras de la bobina secundaria.

Como el cambio en el flujo magnético es equivalente para la bobina primaria y la secundaria, podemos igualar:

\[\Delta \phi_p =\Delta \phi_s ,\]

lo que nos permite combinar ambas ecuaciones para obtener la relación:

\[\frac{V_{in}}{V_{out}}=\frac{N_{in}}{N_{out}}.\]

Esta es la ecuación de nuestro transformador, suponiendo que no se pierde energía durante la inducción.

Ejemplos de la Ley de Faraday-Lenz

Por último, veamos un ejemplo en el que podamos aplicar la Ley de Faraday.

Considera una bobina de \(N=6\) espiras, con un radio de \(5,0\,\mathrm{cm}\). A su lado se coloca un imán que produce un campo magnético de \(20\,\mathrm{mT}\), perpendicular a la bobina. El imán se mueve a un ritmo constante y está en movimiento durante \(15\,\mathrm{s}\).

  1. ¿Cuál es el flujo magnético total generado mientras el imán se mueve junto a la bobina?
  2. Utilizando la ley de Faraday, ¿cuánto FEM se genera en la bobina?
  3. La bobina se conecta al lado primario de un transformador. La bobina secundaria tiene \(N_{out}=10\) espiras. Ahora se conecta una fuente de alimentación a la bobina primaria para producir una corriente alterna con la misma cantidad de tensión calculada en la segunda pregunta, ¿cuál es la FEM inducida en la bobina secundaria?

Solución:

1. En primer lugar, debemos calcular el área que atraviesan las líneas del campo magnético. Como conocemos el radio del círculo, podemos utilizar \(A=\pi r^2\) para hallarla:

\[\begin{align} A&=\pi r^2 \\ &=\pi\cdot(5\cdot 10^{-2})^2 \\ &=7,9\cdot 10^{-3} m^2 \end{align}\]

Como las líneas de campo son perpendiculares a la bobina, y sabemos que \(\theta=0\,\mathrm{rad}\) dado que las líneas de campo son paralelas al vector perpendicular al área, nuestro flujo magnético es:

\[\phi=20\cdot 10^{-3}\,\mathrm{T}\cdot 7,9\cdot 10^{-3} m^2\cdot \cos(0)=1,6\cdot10^{-4}\,\mathrm{Wb}\]

2. Ahora, podemos aplicar la ley de Faraday, ya que hemos calculado el cambio total del flujo magnético. Esto nos da:

\[\epsilon=-6\dfrac{1,6\cdot 10^{-4}\,\mathrm{Wb}}{15\,\mathrm{s}}=-6,4\cdot 10^{-5}\,\mathrm{V}.\]

3. Para calcular la tensión de salida, podemos reordenar la ecuación de nuestro transformador como:

\[V_{out}=\frac{V_{in}N_{out}}{N_{in}}.\]

Ahora, podemos sustituir nuestros números para obtener:

\[V_{out}=\dfrac{6,4\cdot 10^{-5}\,\mathrm{V}\cdot 10}{6}=1,1\cdot 10^{-4}\,\mathrm{V}\]

Ley de Faraday-Lenz - Puntos clave

  • La ley de Faraday-Lenz establece que la cantidad de FEM inducida en un conductor es proporcional a la velocidad de cambio del flujo magnético.
  • La ley de Lenz establece que la dirección de la corriente inducida debe ser opuesta a la del movimiento que provoca la inducción.
  • El campo magnético debe estar en movimiento respecto al conductor para que se induzca el FEM.
  • La inducción electromagnética en un conductor viene dada por la ecuación \(\epsilon=-\dfrac{\Delta \phi_B}{\Delta t}\).
  • La inducción electromagnética en un solenoide con espiras viene dada por \(\epsilon=-N\dfrac{\Delta \phi_B}{\Delta t}\).
  • La ley de Faraday permite a los transformadores pasar de una tensión más alta a una más baja, y viceversa.
  • Las líneas de campo magnético van del polo norte de un imán al polo sur.

Preguntas frecuentes sobre Ley de Faraday-Lenz

La ley de Faraday-Lenz establece que la fuerza electromotriz inducida es proporcional a la velocidad de cambio del flujo magnético en el campo (electro) magnético.

En la fórmula para calcular la fuerza electromotriz

ϵ=−ΔϕB/Δt, 

el signo negativo de la parte derecha de la ecuación se debe al efecto de la Ley de Lenz.

Faraday descubrió que la inducción electromagnética es la formación de una fuerza electromotriz, o FEM, debida al movimiento de un campo electromagnético cerca de un conductor eléctrico.  

Podemos calcular la fuerza electromotriz inducida en un conductor de superficie constante mediante:

ϵ=−ΔϕB/Δt, 

donde ϵ es la fuerza electromotriz inducida medida en voltios (V) , ΔϕB es el cambio de flujo magnético medido en webers (Wb) y Δt es el cambio en el tiempo medido en segundos (s). 

El flujo magnético es la componente perpendicular de un campo magnético que atraviesa un área.  

Cuestionario final de Ley de Faraday-Lenz

Pregunta

¿Qué es la corriente continua?

Mostrar respuesta

Answer

La corriente continua (CC) es una corriente eléctrica que tiene una magnitud constante en el tiempo. 

Show question

Pregunta

¿Para qué se utiliza la corriente continua?

Mostrar respuesta

Answer

La corriente continua (CC) se utiliza principalmente en aplicaciones de bajo voltaje, como las diferentes celdas de las baterías de los teléfonos, las baterías de los ordenadores portátiles o las baterías de los coches. La CC también se utiliza en los paneles solares, donde la CC se convierte en CA para el uso diario. 

Show question

Pregunta

¿Cómo se comporta la corriente alterna?


Mostrar respuesta

Answer

La corriente alterna (CA) es una corriente que varía periódicamente su magnitud en el tiempo en una forma de onda sinusoidal. La principal característica de la corriente alterna es la alternancia de su magnitud entre valores positivos y negativos.

Show question

Pregunta

¿Cuáles son las diferencias entre la corriente continua y la corriente alterna?

Mostrar respuesta

Answer

La corriente continua es más eficiente que la corriente alterna.

Show question

Pregunta

¿Cuál es el sentido de la corriente alterna?

Mostrar respuesta

Answer

La CA oscila intermitente y periódicamente de un sentido a otro.

Show question

Pregunta

¿Para qué se utiliza la corriente alterna?

Mostrar respuesta

Answer

La corriente alterna (CA) se utiliza para alimentar algunos motores eléctricos, por ejemplo, los motores de inducción de CA. La CA también se utiliza para transmitir energía eléctrica desde las centrales de generación de energía hasta las zonas urbanas para uso comercial y personal y otras instalaciones de uso industrial.

Show question

Pregunta

¿Cuál de las siguientes afirmaciones es cierta?

Mostrar respuesta

Answer

La gráfica corriente-tiempo de la CA oscila de forma sinusoidal y tiene valores de corriente de pico negativos y positivos.

Show question

Pregunta

¿Qué es la corriente alterna?


Mostrar respuesta

Answer

La corriente alterna (CA) es una corriente eléctrica oscilante que varía cíclicamente en magnitud y dirección a lo largo del tiempo.

Show question

Pregunta

¿Cuál de estas corrientes tiene una magnitud constante en el tiempo?

Mostrar respuesta

Answer

Continua.

Show question

Pregunta

Thomas Alba Edison apoyaba el uso de corriente alterna. ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso.

Show question

Pregunta

El generador de corriente alterna transforma la energía eléctrica en energía mecánica. ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso.

Show question

Pregunta

¿Mediante que gráfica puede representarse la corriente alterna?

Mostrar respuesta

Answer

Seno.

Show question

Pregunta

¿Cuál de estos no es una parte del generador de corriente alterna? 

Mostrar respuesta

Answer

Espira.

Show question

Pregunta

Para un transformador con \(N_{in}=45\), \(N_{out}=10\), y \(V_{in}=40\,\mathrm{V}\), ¿cuál es la tensión de salida?

Mostrar respuesta

Answer

\(8,9\,\mathrm{V}\).

Show question

Pregunta

Las líneas de campo magnético de un imán están a \(70^{\circ}\) de un área circular de radio \(2\,\mathrm{cm}\). Si el campo magnético tiene un valor de \(0,02\,\mathrm{T}\), ¿cuál es el flujo magnético?

Mostrar respuesta

Answer

\(8,6\cdot 10^{-6}\,\mathrm{Wb}\).

Show question

Pregunta

Para un transformador con \(N_{in}=10\), \(N_{out}=20\), y \(V_{out}=80\,\mathrm{V}\) , ¿cuál es la tensión de entrada?

Mostrar respuesta

Answer

\(40\,\mathrm{V}\).

Show question

Pregunta

¿Cuánta fuerza electromotriz se induce en una bobina de \(N=10\) espiras por un cambio de flujo magnético de \(1,5\,\mathrm{mWb}\) en \(30\,\mathrm{s}\)?

Mostrar respuesta

Answer

\(-5,0\cdot 10^{-4}\,\mathrm{V}\).

Show question

Pregunta

Las líneas de campo magnético de un imán están a \(30^{\circ}\) de un área cuadrada de longitud \(6\,\mathrm{cm}\). Si la intensidad del campo magnético tiene un valor de \(0,01\,\mathrm{T}\) , ¿cuál es el flujo magnético?

Mostrar respuesta

Answer

\(3,1\cdot 10^{-5}\,\mathrm{Wb}\).

Show question

Pregunta

Un transformador únicamente puede utilizarse para cambiar tensiones mayores en tensiones menores. ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso. También sirven para cambiar de tensiones menores a mayores.

Show question

Pregunta

Una bobina en movimiento pasa junto a un imán inmóvil, induciendo una corriente en la bobina. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero, ya que existe un movimiento relativo entre las líneas de campo del imán y del conductor. ¡No importa cuál se mueva!

Show question

Pregunta

Cuando un imán se deja caer junto a un alambre, se induce una corriente en el alambre. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero, porque el movimiento del imán permite un movimiento relativo entre las líneas de campo y el conductor.

Show question

Pregunta

Cuando se coloca un imán estacionario junto a una bobina, se induce una fuerza electromotriz en la bobina. ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso. Esto se debe a que necesitamos un movimiento relativo entre el imán y la bobina.

Show question

Pregunta

¿Cómo viajan las líneas del campo magnético entre los polos de un imán?

Mostrar respuesta

Answer

De norte a sur. 

Show question

Pregunta

¿Cuál es la expresión matemática del flujo magnético?

Mostrar respuesta

Answer

\(\phi=|\vec{B}|\cos(\theta)|\vec{A}|\).

Show question

Pregunta

¿Cómo se define el flujo magnético?

Mostrar respuesta

Answer

El flujo magnético es la componente perpendicular de un campo magnético que atraviesa un área. 

Show question

Pregunta

¿Cuál es la expresión matemática de la inducción electromagnética?

Mostrar respuesta

Answer

\(\epsilon=-\dfrac{\Delta \phi_B}{\Delta t}\).

Show question

Pregunta

¿Cuál es la definición de la ley de Lenz?

Mostrar respuesta

Answer

La ley de Lenz establece que la dirección de la corriente inducida es contraria al movimiento que la provoca.

Show question

Pregunta

¿Cuál es la definición de la ley de Faraday-Lenz?

Mostrar respuesta

Answer

La ley de Faraday-Lenz establece que la fuerza electromotriz inducida es proporcional a la velocidad de cambio del flujo magnético en el campo.

Show question

Conoce más sobre Ley de Faraday-Lenz
60%

de los usuarios no aprueban el cuestionario de Ley de Faraday-Lenz... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration