Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|
Interferencias de ondas

Imagínate a ti, ahora mismo, caminando por la calle con gente. Tú vas tan tranquilo (a lo mejor escuchando tu música con los auriculares), cuando, de pronto, te encuentras con alguien similar a ti y chocan. Justo al chocar, se fusionan en uno solo, pero el doble de alto. Pero, si te chocases con otra persona, a lo mejor serías…

Content verified by subject matter experts
Free StudySmarter App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Interferencias de ondas

Interferencias de ondas

Guarda la explicación ya y léela cuando tengas tiempo.

Guardar
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Imagínate a ti, ahora mismo, caminando por la calle con gente. Tú vas tan tranquilo (a lo mejor escuchando tu música con los auriculares), cuando, de pronto, te encuentras con alguien similar a ti y chocan. Justo al chocar, se fusionan en uno solo, pero el doble de alto. Pero, si te chocases con otra persona, a lo mejor serías la mitad de alto. Evidentemente, esto es algo impensable en la vida real, porque al chocar con alguien no se suman las alturas. Sin embargo, si tú fueras una onda esto sería algo normal, debido al concepto de interferencia.

¿Qué son las interferencias?

La interferencia entre ondas se produce cuando dos o más ondas se superponen y su suma produce una onda diferente, en términos de amplitud. Esta nueva onda tiene una representación matemática diferente y da lugar a una forma distinta.

Pero, antes de profundizar en las interferencias, es importante entender las características de las ondas y el concepto de diferencia de fase.

Los atributos de una onda son su amplitud \(A\), su frecuencia \(f\) y su fase \(\theta\).

  • La amplitud \(A\) indica la distancia entre el valor máximo (o mínimo) de una onda y su punto de equilibrio.
  • La frecuencia \(f\) es el número de oscilaciones por unidad de tiempo (normalmente, un segundo) que hace la onda.
  • La fase \(\theta\) es la posición de la onda en el espacio respecto a un punto de referencia.

Para aclarar las ideas y conceptos que hay detrás de la amplitud, la frecuencia y la fase, veamos un ejemplo en el que tenemos las funciones sinusoidales \(\sin(x)\) y \(\sin(x+\pi/2)\).

Ambas tienen la misma forma, porque la amplitud y la frecuencia son iguales. Veamos sus gráficas:

Interferencias de Ondas Ondas sinusoidales StudySmarterFig. 1: Las ondas representadas por las funciones \(\sin(x)\) (azul) y \(\sin(x+\pi/2)\) (verde) no coinciden exactamente en el espacio.

Como podemos ver, la fase es diferente, lo que provoca un desplazamiento hacia atrás de la segunda onda (en verde). Este desplazamiento es fácil de ver, porque el punto en el que la función pasa de cero en el eje de las \(x\) ya no es el origen. Esto es muy importante, porque cambia la forma en la que las ondas se superponen.

Estudiamos las diferencias de fase con la ayuda de un punto de referencia. En el gráfico anterior, el punto de referencia se toma como el origen. El ángulo de fase de la onda azul \(\sin(x)\) es cero y puede mostrarse como \(\sin(x+0)\). El punto de partida de la onda, por tanto, es el mismo que el punto de referencia sin diferencia de fase.

Para la onda verde, sin embargo, la diferencia de fase es positiva \((+\pi/2)\); esto significa que el origen de la onda (su punto de partida) se ha dado antes. En el gráfico, encontraríamos este origen de la onda a la izquierda del punto de referencia que, para nosotros, es el origen del eje de coordenadas.

Por otro lado, cuando la diferencia de fase es negativa, se dice que el origen de la onda está después del punto de referencia. Por lo tanto, en el gráfico, estaría a la derecha del punto de referencia.

Una vez hemos entendido el concepto de la diferencia de fase, podemos empezar a hablar sobre las interferencias entre ondas. En función del tipo de interferencia, distinguimos entre interferencia constructiva e interferencia destructiva.

Interferencia constructiva

La interferencia constructiva se da cuando dos o más ondas se superponen y la amplitud en un punto de la onda resultante es mayor que el de las ondas originales. Para ello las ondas tienen que estar en la misma fase.

Para que se dé esta interferencia constructiva es necesario que las ondas incidentes tengan la misma frecuencia, o muy similar.

Por ejemplo, imagínate que tenemos dos ondas iguales. Al sumarlas, su amplitud se doblará:

\[\sin(x)+\sin(x)=2\sin(x)\]

Aunque esto es fácil de ver, de forma analítica, fijémonos en lo que significa gráficamente:

Tomamos, nuevamente, dos ondas sinusoidales y las sumamos una encima de la otra (como en la Figura 2)

Interferencias de Ondas Constructiva StudySmarterFig. 2: Al tener dos ondas con la misma frecuencia y sin desfase (como las representadas), que sigan la función \(\sin(x)\), la interferencia resultante será constructiva.

Los puntos que tienen la misma coordenada \(x\) también tienen la misma amplitud. Al considerar que estás dos ondas interfieren, la una con la otra, tenemos que sumarlas. Esto hace que la onda resultante se estire: donde la amplitud era \(1\), ahora es \(2\); y donde era \(-1\), ahora es \(-2\). Por tanto, tenemos una interferencia constructiva.

Un ejemplo en la vida cotidiana de interferencia constructiva es dos altavoces que reproducen la misma canción. El volumen de la música percibida es máximo cuando las ondas producidas por los altavoces están en fase, interfiriendo constructivamente.

Interferencia destructiva

La interferencia destructiva se produce cuando dos o más ondas se superponen y la amplitud en un punto de la onda resultante sea menor que el de las ondas originales. Esto se da cuando hay un desfase entre las ondas.

Cuando las ondas tienen fases diferentes, el resultado de la superposición cambia, especialmente si este desfase es de \(\pi\) radianes. En ese caso, a cada punto se le suma uno de valor opuesto.

Por ejemplo, \(1,+(-1)\), como en el gráfico siguiente:

Interferencias de Ondas Destructiva StudySmarterFig. 3: Al tener dos ondas con misma frecuencia, pero con un desfase de \(\pi\) como, en este caso, con \(\sin(x-\pi/2)\) (azul) y \(\sin(x+\pi/2)\) (verde), observamos una interferencia destructiva que ocasiona una línea recta en el origen con \(A=0\).

La suma de estas ondas es cero, debido a la interferencia destructiva. Observa cómo, en este caso, la fase provoca el mismo resultado que el signo negativo que precede a la función:

\[\begin{align} \sin(x-\pi/2)+\sin(x+\pi/2)&=0 \\ \sin(x-\pi/2)-\sin(x-\pi/2)&=0 \end{align}\]

Los ejemplos que hemos dado han sido de interferencias perfectamente constructivas y destructivas, pero evidentemente la superposición se dará entre ondas que no necesariamente tengan un desfase de \(\pi\) o \(0\). En estos casos, la fase de la onda resultante se desplaza a algún punto entre las fases de las ondas que interfieren, dependiendo de sus amplitudes, y el valor de su amplitud estará entre cero y el doble de la amplitud de las ondas que interfieren.

Interferencias de Ondas Interferencia entre ondas a distinta fase StudySmarter

Fig. 4: Cuando interfieren dos ondas con desfases distintos a \(\pi\) o \(0\) como, por ejemplo, \(\sin(x)\) (azul) y \(\sin(x-π/2)\) (verde), la onda resultante de la interferencia tendrá puntos con amplitudes menores y mayores que las ondas incidentes (rosa).

Interferencias de ondas mecánicas

Hemos hablado de la interferencia entre ondas unidimensionales. El mismo fenómeno se da cuando la propagación de ondas mecánicas se produce a lo largo de dos o más dimensiones. En este caso, dos ondas mecánicas interfieren y crean lo que se conoce como un patrón de interferencia.

Un patrón de interferencia es el patrón de máximos y mínimos generado por la interferencia de dos o más ondas.

Cuando se arrojan dos piedras a un lago, una de las cuales se lanza desde un punto ligeramente diferente y cercano a aquel desde el que se lanzó la primera piedra, se forma una onda bidimensional en la superficie del agua. En este escenario, la superficie del agua se ondula, pero sigue mostrando una regularidad; de ahí el nombre de este tipo de interferencia.

Interferencias de Ondas Ondas mecánicas StudySmarterFig. 5: En el caso de una onda mecánica bidimensional, la posición de las fuentes (las dos pequeñas aperturas) también influye en el patrón. Observa cómo las ondas son mucho más onduladas cerca de las fuentes, y casi no se ven afectadas al alejarse de ellas

En la imagen, dos ondas circulares se propagan una hacia la otra con un ángulo de \(\pi/2\). Los frentes de onda interfieren casi ortogonalmente, lo que da al agua una superficie en forma de rejilla. Las líneas de la cuadrícula son puntos de interferencia destructiva, mientras que entre ellas hay puntos de interferencia constructiva.

Interferencias de ondas sonoras

La interferencia entre ondas sonora funciona esencialmente igual que el de las ondas mecánicas y cualquier otro tipo de ondas. En este caso, la amplitud resultante está directamente relacionada con la intensidad del sonido que escuchamos.

Por tanto, imagínate que colocamos dos altavoces en una cierta disposición y nosotros nos ubicamos en una posición tal que, en ese punto, el desfase entre las ondas sea aproximadamente \(0\). Si reproducimos a la vez una canción, el volumen con el que la escucharemos será aproximadamente el doble del volumen de cada altavoz, ya que tendríamos una interferencia constructiva.

Análogamente, pasaría lo mismo si dispusiésemos los altavoces de tal forma que el desfase fuese de \(\pi\). Estos patrones de interferencia constructivos y destructivos dan lugar a los puntos muertos y puntos vivos de la acústica de un auditorio.

Si lo haces suficiente bien, ¡podrías hacer este experimento en casa! Evidentemente, no lograrías recrear el caso ideal puesto que las ondas sonoras rebotan en las paredes y crean nuevas interferencias constantemente, pero podrías observar cualitativamente los resultados.

Interferencia de la luz

Para las ondas electromagnéticas, como la luz, es el mismo proceso que en los casos anteriores: los máximos y mínimos de amplitud se traducirán en zonas de máxima y mínima intensidad lumínica. Cuando estamos tratando con la luz, es muy fácil reproducir un patrón de interferencia. Para ello realizamos lo que se conoce como el experimento de la Doble rendija de Young.

Doble rendija de Young

En este experimento tendremos originalmente una fuente de luz; generalmente, un láser. Incidiremos este haz de luz sobre una estructura de doble rendija, de milímetros de ancho (cada una), que podremos cambiar. También, están separadas a una distancia arbitraria, que modificaremos con tal de observar un patrón de interferencia distinto, ya que hay una relación directa entre esta distancia y el desfase entre las dos ondas que se generarán.

Una vez el haz luz pase por cada una de las rendijas, generará dos frentes de onda distintos. Estos se superpondrán y, por tanto, crearán un patrón de interferencia que podremos observar con una pantalla a una cierta distancia. En el siguiente patrón observamos zonas muy brillantes que corresponden a interferencias constructivas y zonas más oscuras que serán interferencias destructivas.

Interferencias de Ondas Interferencia de la luz StudySmarterFig. 6: Diversos patrones de interferencia con zonas iluminadas (máximos) y zonas oscuras (mínimos) que se puede observar como resultado de la interferencia entre dos ondas. Cada uno se obtiene con un ancho de la rendija diferente y modificando la distancia entre ellas.

Este experimento sirvió como fundamento para validar las teorías en las que se basan la física cuántica actual.

Interferencia - Puntos clave

  • La interferencia entre ondas se produce cuando dos o más ondas se superponen y su suma produce una onda diferente, en términos de amplitud.
  • Algunos atributos de una onda son su amplitud \(A\), su frecuencia \(f\) y su fase \(\theta\).
  • Una interferencia constructiva se produce cuando dos o más ondas se superponen y la amplitud en un punto de la onda resultante es mayor que el de las ondas originales.
  • Una interferencia destructiva se produce cuando dos o más ondas se superponen y la amplitud en un punto de la onda resultante es menor que el de las ondas originales.
  • La interferencia puede ser constructiva o destructiva; pero, en general, la interferencia será una combinación de ambas.
  • El fenómeno de la interferencia se produce con la propagación en una o más dimensiones. En este último caso se habla de patrones de interferencia.
  • En las ondas sonoras las interferencias constructivas y destructivas nos darán puntos en el espacio con un mayor o menor volumen que está relacionado con la amplitud de la onda.
  • En el caso de las ondas electromagnéticas, como la luz, las interferencias nos darán zonas con más o menos intensidad.
  • El experimento de la Doble rendija de Young nos da un patrón de interferencia con puntos luminosos y puntos oscuros.

Preguntas frecuentes sobre Interferencias de ondas

Hablamos de interferencia destructiva cuando dos o más ondas se superponen y la amplitud en un punto de la onda resultante es menor que el de las ondas originales. 


Esto se da cuando hay un desfase entre las ondas.

Para que una interferencia entre dos o más ondas sea constructiva, gráficamente, deberíamos observar que estas ondas se superpon es decir, que sus máximos y mínimos coinciden en los mismos puntos. Esto querrá decir que están en fase. 

La interferencia constructiva ocurre cuando dos o más ondas se superponen y la amplitud en un punto de la onda resultante es mayor que el de las ondas originales. 


Para ello, las ondas tienen que estar en la misma fase.

Cuando dos ondas se encuentran se produce una interferencia, en las ondas se superponen y su suma produce una onda diferente, en términos de amplitud. 


Esta nueva onda tiene una representación matemática diferente y da lugar a una forma distinta.

Las interferencias entre las dos pueden ser constructivas, que dan lugar a una onda con mayor amplitud en un punto; y las destructivas, que dan lugar a una onda con una amplitud menor en un punto. 


Generalmente, cuando dos ondas se encuentran la onda resultante es una combinación de interferencias constructivas y destructivas.

Para las ondas electromagnéticas, como la luz, se producen interferencias que serán constructivas y destructivas. En este caso, los máximos y mínimos de amplitud se traducirán en zonas de máxima y mínima intensidad lumínica.


Cuando estamos tratando con la luz, es muy fácil reproducir un patrón de interferencia. Para ello, realizamos lo que se conoce como el experimento de la Doble rendija de Young.

Cuestionario final de Interferencias de ondas

Interferencias de ondas Quiz - Teste dein Wissen

Pregunta

Si sumamos dos ondas idénticas, ¿cuál de las siguientes cosas ocurrirá?

Mostrar respuesta

Answer

La amplitud resultante se duplicará.

Show question

Pregunta

Si dos ondas con las mismas amplitudes están en oposición de fase, ¿cuál será su amplitud resultante?

Mostrar respuesta

Answer

Infinito.

Show question

Pregunta

Cuando dos ondas en oposición de fase interfieren entre sí, ¿qué tipo de interferencia se produce?

Mostrar respuesta

Answer

Interferencia destructiva.

Show question

Pregunta

Cuando la propagación se produce a lo largo de dos o más dimensiones, dos ondas interfieren y crean:

Mostrar respuesta

Answer

Un patrón de interferencia.

Show question

Pregunta

¿Cuál de las siguientes es una definición correcta de la frecuencia de una onda?

Mostrar respuesta

Answer

Es el tiempo que tarda una onda en pasar por un punto determinado.

Show question

Pregunta

Cuando dos o más ondas se superponen en un punto, el desplazamiento total causado en ese punto es la suma de los desplazamientos individuales causados por las ondas en ese punto.

¿Cómo se llama este fenómeno?

Mostrar respuesta

Answer

Superposición.

Show question

Pregunta

¿Cuáles son las tres características que describen una onda?

Mostrar respuesta

Answer

Amplitud, frecuencia y fase.

Show question

Pregunta

La interferencia no depende de la fase. ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso; de hecho, el desfase entre las ondas nos dice si la interferencia es constructiva o destructiva.

Show question

Pregunta

¿Verdadero o falso?: Solo tenemos interferencias en ondas que se desplazan en una dimensión. 

Mostrar respuesta

Answer

Falso: tenemos interferencias en dos y tres dimensiones, también. 

Show question

Pregunta

Cuando lanzamos dos rocas en el agua, una cerca de la otra, las ondas que generan producirán un patrón de interferencia. ¿Verdadero o falso? 

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

Si dos ondas sinusoidales de la misma amplitud, frecuencia y fase interfieren, ¿la onda resultante tiene una fase diferente?


Mostrar respuesta

Answer

No, tendrá la misma fase. 

Show question

Pregunta

¿Qué ocurre cuando la interferencia no es completamente constructiva o destructiva?

Mostrar respuesta

Answer

La onda resultante tiene una amplitud y una fase diferentes a las de las dos ondas que han interferido.

Show question

Pregunta

Las interferencias constructivas y destructivas en ondas sonoras producen que haya puntos donde el volumen sea más alto o más bajo. ¿Verdadero o falso? 

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

En el patrón de interferencia que obtenemos si realizamos el experimento de la doble rendija, ¿qué representan las zonas oscuras? 

Mostrar respuesta

Answer

Interferencias destructivas.

Show question

Pregunta

En el patrón de interferencia que obtenemos si realizamos el experimento de la doble rendija, ¿qué representan las zonas brillantes? 


Mostrar respuesta

Answer

Interferencias constructivas.

Show question

60%

de los usuarios no aprueban el cuestionario de Interferencias de ondas... ¿Lo conseguirás tú?

Empezar cuestionario

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free fisica cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Empieza a aprender con StudySmarter, la única app de estudio que necesitas.

Regístrate gratis
Illustration