La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
Gracias a la evolución, las poblaciones pueden adaptarse a las condiciones de su entorno. Por tanto, la evolución es esencial para la supervivencia de todos los organismos vivos.Evolución: el cambio en las características heredables de las poblaciones a lo largo de varias generaciones.Especiación: proceso evolutivo por el que las poblaciones se convierten en especies diferentes.Los individuos de las poblaciones poseen una serie de características…
Explore our app and discover over 50 million learning materials for free.
Guarda la explicación ya y léela cuando tengas tiempo.
GuardarLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenGracias a la evolución, las poblaciones pueden adaptarse a las condiciones de su entorno. Por tanto, la evolución es esencial para la supervivencia de todos los organismos vivos.
Evolución: el cambio en las características heredables de las poblaciones a lo largo de varias generaciones.
Especiación: proceso evolutivo por el que las poblaciones se convierten en especies diferentes.
Los individuos de las poblaciones poseen una serie de características que son el resultado de la interacción entre sus genes y el medio ambiente. Las diferencias en las características de la población se producen debido a fuentes de variabilidad tanto genéticas como ambientales. Por ejemplo, las mutaciones son una fuente de variabilidad genética.
Mutación: Una mutación genética es un cambio heredable en la secuencia del ADN que puede dar lugar a un polipéptido alterado.
La evolución actúa sobre esta variación de los rasgos observables. Diferentes procesos evolutivos, como la selección natural, el apareamiento selectivo o la deriva genética dan lugar a que algunos rasgos sean más comunes y otros más infrecuentes.
Selección natural: proceso natural por el que se selecciona a los individuos, con base en su mejor adaptación a las condiciones ambientales abióticas o bióticas del momento. Es decir, los mejor adaptados sobreviven, tienen descendencia y, por consiguiente, sus características genéticas se perpetúan.
Apareamiento selectivo: es la tendencia de un individuo de una especie a seleccionar ciertas características en el momento de escoger una pareja para tener descendencia.
Deriva genética: es un fenómeno en el cual las frecuencias génicas van fluctuando de manera aleatoria. Al ser un proceso aleatorio, a veces puede hacer que predomine un alelo, sin que sea necesariamente beneficioso o haya sido escogido a través de un proceso de selección natural.
En una población de zorros del Ártico, los individuos con el pelaje más blanco podrán camuflarse mejor en la nieve, lo que supone un menor riesgo de depredación. Esto significa que un mayor número de estos individuos podrá sobrevivir, reproducirse y, por tanto, alcanzar una mayor aptitud. Este es un ejemplo del proceso de selección natural.
Fig. 1. El zorro ártico, con su pelaje, se integra en su hábitat.
Como resultado, con el tiempo, las poblaciones se vuelven más aptas y mejor adaptadas a su entorno. A medida que las poblaciones se especializan cada vez más a sus entornos específicos, pueden convertirse en especies distintas. Este proceso es conocido como especiación.
Toda la vida en la Tierra comparte un ancestro común conocido como LUCA, que se corresponde a las siglas en inglés de Last Universal Common Ancestor (Último Ancestro Común Universal) y que vivió hace unos 3.500-3.600 millones de años. Desde ese único organismo, miles de millones de años de evolución y especiación han dado lugar a la increíble diversidad de vida que podemos observar hoy en día.
La teoría de la evolución por selección natural se atribuye, en gran medida, a Charles Darwin. La expuso en su libro El origen de las especies, aunque también fue concebida de forma independiente por Alfred Russel Wallace.
Darwin basó esta teoría en varias observaciones:
Darwin sostenía que los miembros de una población tienen más probabilidades de ser reemplazados por la descendencia de los padres que tienen rasgos favorables y son más capaces de sobrevivir y reproducirse. Con el paso del tiempo, las poblaciones cambian gradualmente para adaptarse mejor a su entorno.
Hay diferentes tipos de pruebas que apoyan la teoría de la evolución:
Las similitudes entre especies nos permiten agruparlas a través de la taxonomía.
Taxonomía: es la ciencia que estudia la clasificación de los seres vivos.
Existen diferencias en la distribución de las especies en distintas zonas geográficas. Cuanto más antiguo sea el origen de la separación geográfica, mayor diferencia habrá entre las especies presentes en zonas separadas. Esto se debe a los distintos procesos evolutivos de las especies en cada zona geográfica.
Disponemos de un amplio registro fósil de los organismos extintos que vivían en la Tierra. El estudio de los fósiles nos ha permitido deducir cómo era la vida en la Tierra y comprender mejor cómo evolucionó y se diversificó. Por supuesto, el registro fósil no está completo. La forma en que se crean los fósiles significa que los organismos de cuerpo blando pueden no estar representados con precisión en nuestros registros. También hay muchas formas intermedias entre tipos de organismos que aún no hemos descubierto o de las que no hay fósiles.
Otra de las pruebas de la evolución es la similitud entre diferentes especies, en términos de extremidades u órganos. Aquí vamos a conocer la diferencia entre órganos homólogos y vestigiales, y sus significados evolutivos.
Estos órganos son de origen común y, por lo tanto, tienen una misma estructura interna adaptada a cada especie. Dependiendo de la especie, pueden ser diferentes en su función o forma.
En el caso de los mamíferos, todos tenemos los mismos huesos en el brazo. Pero un brazo de un humano es muy diferente al de un perro y mucho más distinto al de un delfín. En cada caso, la estructura interna que compartimos ha evolucionado para cumplir diferentes funciones.
Fig. 2: Estructuras homólogas entre vertebrados.
Estos órganos no son vitales; es decir, su ausencia no tendría efectos negativos. Por ejemplo, en el caso de los humanos, el apéndice tuvo una función en el pasado y ahora lo conservamos.
Muchas especies, que parecen distintas, en su edad adulta tienen embriones muy similares. Esto nos indica la presencia de un antepasado común.
Fig. 3: Similitud entre embriones de vertebrados, una de las evidencias de la evolución.
En primer lugar, la estructura del código genético es muy similar en todos los organismos. Nuestro ADN está compuesto por las mismas bases nitrogenadas (A, C, T y G) y compartimos una proporción significativa de nuestro ADN con nuestros parientes taxonómicos más cercanos. Cuanto más cerca está una especie de otra, más similar tiende a ser su información genética.
Para determinar el grado de similitud entre dos especies, se usa el ADN mitocondrial o el ARN ribosómico.
Hay muchos ejemplos de plantas y animales cuya evolución ha sido guiada por el ser humano mediante la cría selectiva: los perros, los animales de granja domesticados y los cultivos agrícolas, entre otros. Darwin utilizó la cría selectiva como prueba fehaciente de la evolución —en este caso, a través de la selección artificial— cuando presentó por primera vez su teoría al público.
También podemos observar la evolución en tiempo real. Por ejemplo, organismos que evolucionan rápidamente, como las bacterias, siguen evolucionando y adaptándose a los antibióticos que utilizamos contra ellas. Ahora hay muchas cepas de superbacterias, que se han adaptado para resistir y sobrevivir a compuestos (medicamentos) antimicrobianos (antibióticos).
Existen varios tipos de evolución, dependiendo de los patrones del proceso evolutivo en los distintos organismos. Los principales tipos de evolución son:
Fig. 4: Diferentes tipos de evolución.
La evolución divergente es el proceso evolutivo por el que los grupos que descienden de un mismo ancestro común acumulan diferencias genéticas, lo que finalmente conduce a la especiación. Esto puede ocurrir como respuesta a cambios en el entorno de los dos grupos, como cambios en las condiciones abióticas o la introducción de nuevas interacciones bióticas.
Condiciones abióticas: factores del entorno —como la temperatura, el pH, la humedad, etc.— que modulan las condiciones de vida de los organismos.
Condiciones bióticas: conjunto de factores que modulan las condiciones de vida de una especie. Estos factores, a diferencia de los abióticos, son biológicos. Un ejemplo podría ser la presencia de depredadores o la cantidad de competición intra o interespecífica.
La evolución convergente es el proceso evolutivo por el que grupos que no están estrechamente relacionados —es decir, que no descienden de los mismos ancestros directos— evolucionan de forma independiente y obtienen características similares, en respuesta a presiones selectiva similares. En otras palabras, a través de la evolución convergente, diferentes grupos llegan por separado a la misma solución para problemas similares.
La presión selectiva o de selección es el conjunto de factores ambientales abióticos o bióticos que determinan qué fenotipo es el más adecuado. Por ejemplo, si de repente la temperatura baja, habrá una presión de selección a favor de animales con un pelaje más grueso.
Las aves, los insectos voladores y los mamíferos voladores han llegado al fenotipo convergente de las alas como solución al problema de la movilidad, a pesar de que no exista un ancestro común cercano para todos estos animales alados. De hecho, la anatomía de las alas parece muy diferente de un grupo a otro; sin embargo, la mayoría de las alas funcionan con base en los mismos principios, debido a la física del vuelo.
La evolución paralela se refiere al proceso evolutivo por el que dos grupos que comparten un rasgo similar evolucionan otro rasgo en un entorno similar.
Para entender cómo puede ocurrir esto, imaginemos dos grupos de plantas similares que se encuentran en lugares diferentes, pero que están expuestas a condiciones ambientales muy similares. Dado que se enfrentan a las mismas condiciones, podrían desarrollar adaptaciones similares de forma totalmente independiente. Por ejemplo, si estuvieran en un entorno árido, podrían desarrollar una cutícula cerosa y tallos capaces de almacenar agua.
La evolución paralela se confunde, a menudo, con la evolución convergente. Lo importante es tener en cuenta que en la evolución convergente dos grupos llegan al mismo fenotipo desde puntos de partida diferentes, mientras que en la evolución paralela ambos grupos arrancan desde el mismo punto de partida.
La evolución humana es el proceso de especiación que se ha dado hasta nuestra especie actual: Homo sapiens. La línea evolutiva humana proviene de los simios y empezó entre 7 y 13 millones de años atrás, en el continente africano.
Algunas características de nuestra especie son:
Actualmente la población humana ha llegado a un punto en el que tiene cierto control sobre el medio que la rodea y, de alguna manera, la selección natural no actúa con tanta fuerza sobre ella. Por ejemplo, ahora tenemos antibióticos para curar todo tipo de infecciones; en un pasado, sin estas medicinas, muchos más individuos de la población hubiesen muerto sin dejar descendencia.
Charles Darwin expuso la teoría de la evolución por selección natural en su libro "El origen de las especies" en 1859.
La teoría de la evolución por selección natural se atribuye en gran medida a Charles Darwin aunque también fue concebida de forma independiente por Alfred Russel Wallace.
Hay varios tipos de evolución dependiendo de los patrones evolutivos. Estos tipos incluyen la evolución divergente, la evolución convergente y la evolución paralela.
Los individuos de las poblaciones poseen una serie de características que son el resultado de la interacción entre sus genes y el medio ambiente. Las diferencias en las características de la población se producen debido a fuentes de variabilidad tanto genéticas como ambientales. Por ejemplo, las mutaciones son una fuente de variabilidad genética. La evolución actúa sobre esta variación de los rasgos observables.
de los usuarios no aprueban el cuestionario de La evolución... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
How would you like to learn this content?
Free biologia cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.
Guarda las explicaciones en tu espacio personalizado y accede a ellas en cualquier momento y lugar.
Regístrate con email Regístrate con AppleAl registrarte aceptas los Términos y condiciones y la Política de privacidad de StudySmarter.
¿Ya tienes una cuenta? Iniciar sesión