La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
Imagina que estás en un viaje por carretera con un amigo. Tú dices que te quedan \(20 \,\, \mathrm{km}\) por delante, mientras que tu amigo dice que te quedan \(30 \,\, \mathrm{km}\). Puede que no estéis de acuerdo, pero el desacuerdo puede resolverse midiendo la distancia que queda por delante.…
xplora nuestra app y descubre más de 50 millones de materiales de aprendizaje totalmente gratis.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenImagina que estás en un viaje por carretera con un amigo. Tú dices que te quedan \(20 \,\, \mathrm{km}\) por delante, mientras que tu amigo dice que te quedan \(30 \,\, \mathrm{km}\). Puede que no estéis de acuerdo, pero el desacuerdo puede resolverse midiendo la distancia que queda por delante. Al menos, eso es lo que ocurre cuando se viaja a velocidades cotidianas.
Sin embargo, cuando se viaja a velocidades relativistas, que son velocidades cercanas a la de la luz, el desacuerdo entre dos observadores en diferentes marcos de referencia puede ser significativo. En este artículo descubriremos porque ocurren estas discrepancias.
La Dilatación del tiempo es la variación del tiempo de un suceso medido desde un sistema de referencia con respecto a la medición del suceso desde otro sistema de referencia en distinto estado de movimiento.
La Dilatación del tiempo se produce cuando un observador o sistema de referencia se mueve con respecto a otro observador con velocidad constante, lo que hace que el tiempo en su sistema de referencia fluya más lentamente.
La contracción de la longitud es el fenómeno que establece que cuando un observador se mueve a una velocidad cercana a la de la luz, las distancias medidas en distintos sistemas de referencia por varios observadores no son las mismas.
Hablamos de contracción de la longitud cuando la longitud de un objeto que se desplaza a una determinada velocidad con respecto a un marco de referencia se mide como más corta que su longitud propia. La longitud propia (\(L_0\)) es la distancia entre dos puntos observados por un observador que está en reposo respecto a ambos puntos.
A pesar de que los relojes miden diferentes periodos transcurridos para el mismo procedimiento, la velocidad relativa—que es la distancia dividida por el tiempo transcurrido— es la misma. Esto significa que la distancia también se ve afectada por el movimiento relativo del observador. Estas dos magnitudes afectadas se anulan mutuamente, por lo que la velocidad permanece constante. Para que la velocidad relativa sea la misma para dos observadores que ven tiempos diferentes, también se deben medir distancias diferentes.
Ahora, que ya hemos hablado de lo que significa la contracción de la longitud y la longitud propia, veamos un ejemplo para explorar cómo calcular la contracción de la longitud.
Supongamos que una nave espacial se mueve a una velocidad \(v\) cercana a la de la luz. Un observador A en la tierra y un observador B en la nave espacial observarán longitudes diferentes para la distancia recorrida por la nave espacial.
Sabemos que la velocidad de la nave espacial es la misma para todos los observadores. Si calculamos la velocidad \(v\) respecto al observador terrestre A, obtenemos:
\[v=\dfrac{L_0}{\Delta t}\]
La velocidad relativa al observador en movimiento B es:
\[v=\dfrac{L}{\Delta t_0}\]
Las dos velocidades son iguales:
\[\dfrac{L_0}{\Delta t}=\dfrac{L}{\Delta t_0}\]
Sabemos por la dilatación del tiempo que \(\Delta t = \gamma \Delta t_0\). Introduciendo esto en la ecuación anterior, obtenemos:
\[\begin{aligned}\dfrac{L_0}{\gamma \Delta t_0}&=\dfrac{L}{\Delta t_0}\\ \cancel{\Delta t_0} \dfrac{L_0}{\gamma \cancel{\Delta t_0}}&=L\end{aligned}\]
\[\rightarrow \, L=\dfrac{L_0}{\gamma}\]
También sabemos que el factor de Lorentz se calcula como:
\[\gamma=\dfrac{1}{\sqrt{1-\frac{v^2}{c^2}}}\]
Insertando \(\gamma\), obtenemos la ecuación de la contracción de la longitud, como se muestra a continuación:
\[L=L_0\cdot \sqrt{1-\frac{v^2}{c^2}}\]
Una de las consecuencias de la contracción de la longitud es que si un objeto se mueve a una velocidad cercana a la de la luz, su longitud puede ser observada como menor que su longitud propia por un observador que esté en reposo respecto al movimiento.
Consideremos el siguiente ejemplo:
Coge un palo de \(10 \,\, \mathrm{cm}\). Su longitud dejará de parecer de \(10 \,\, \mathrm{cm}\) si pasa a una velocidad cercana a la de la luz.
La longitud del palo en reposo se denomina longitud propia. Cuando el palo se mueve a una velocidad cercana a la de la luz, la longitud medida será siempre menor que la longitud propia. Cuando la velocidad del bastón es igual a la de la luz, el bastón no debería tener (en teoría) ninguna longitud.
La gran mayoría de ejemplos acerca de la contracción de la longitud se relacionan con objetos que se desplazan por el espacio. Planteemos una situación hipotética para poder entender la contracción de la longitud en más profundidad.
Imaginemos que un observador se desplaza desde el planeta azul hasta el rojo, y viaja a la velocidad de \(v=0,85c \, \, \mathrm{m/s}\). La distancia entre los dos planetas es de \(4000\) años-luz, medida por un observador terrestre. ¿Cuál es la distancia relativa al observador de la nave espacial, en kilómetros medidos?
Si \(4000\) años-luz es la distancia medida por el observador terrestre, esta es la longitud propia \(L_0\).
Como dijimos, la relación entre la longitud propia \(L_0\) y la longitud observada por el observador en movimiento es:
\[L=\dfrac{L_0}{\gamma}\]
Por tanto, primero tenemos que calcular el factor de Lorentz \(\gamma\):
\[\begin{align} \gamma&=\dfrac{1}{\sqrt{1-\frac{v^2}{c^2}}}\\&=\dfrac{1}{\sqrt{1-\frac{(0,85c)^2\,\mathrm{m/s}}{c^2\,\mathrm{m/s}}}} \\ &=1,9 \end{align}\]
las variables conocidas \(L_0\) y \(v\) nos da:
\[L=\dfrac{4000\,\,\text{años-luz}}{1,9}=2105,26 \, \, \text{años-luz}\]
1 año-luz es igual a \(9,46 \cdot 10^{12}\) kilómetros.
\[L=2105,26\cdot (9,46\cdot 10^{12}\,\, \mathrm{km})=1,99 \cdot 10^{16}\,\, \mathrm{km}\]
Hablamos de contracción de la longitud cuando la longitud de un objeto que se desplaza a una determinada velocidad con respecto a un marco de referencia se mide como más corta que su longitud propia.
L=L0/γ
Según la teoría de la relatividad, el tiempo y las longitudes dejan de ser absolutas, lo que significa que ya no son la misma para todos los observadores.
La medición de estas cantidades depende de la velocidad a la que viaje el observador que las mide. El primer postulado establece que no existe un sistema inercial de referencia privilegiado, y el segundo postulado de la relatividad especial afirma que la velocidad de la luz en el vacío es independiente del movimiento de su fuente y la declara como constante universal.
Podemos aplicar este concepto cuando resolvemos problemas que implican objetos moviéndose a velocidades cercanas a la de la luz; por ejemplo, una nave moviéndose en el espacio a velocidades muy muy altas.
Tarjetas en Contracción de la longitud15
Empieza a aprenderEl factor de Lorenzt (\gamma\) siempre será _____ que \(1\).
Mayor (o igual).
¿Qué es la contracción de la longitud?
La distancia entre dos puntos observados por un observador que está en reposo respecto a ambos puntos.
¿Qué es el tiempo propio?
El tiempo propio es el tiempo medido por un observador en reposo en relación con el evento observado.
¿Cuál de las siguientes corresponde a la fórmula del factor de Lorentz?
\[\gamma=\dfrac{1}{\sqrt{1-\frac{v^2}{c^2}}}\].
¿Qué se entiende por velocidades relativistas?
Velocidades que se consideran cotidianas.
¿Cómo se ve afectada la longitud de un objeto por la contracción de la longitud?
Se puede observar que la longitud es menor que la propia.
¿Ya tienes una cuenta? Iniciar sesión
La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.
Guarda las explicaciones en tu espacio personalizado y accede a ellas en cualquier momento y lugar.
Regístrate con email Regístrate con AppleAl registrarte aceptas los Términos y condiciones y la Política de privacidad de StudySmarter.
¿Ya tienes una cuenta? Iniciar sesión