Prueba t pareada

¿Y si quisieras comprobar si una vacuna ha reducido el número de anticuerpos en sus pacientes? ¿Cómo lo comprobarías? Probablemente no te interesaría el número medio de anticuerpos en cada paciente, sino la diferencia entre el número de anticuerpos antes y después de administrar una vacuna. Puesto que estás comprobando dos veces la información sobre la misma persona, esta prueba se conoce como prueba pareada. En particular, si la muestra de pacientes sometidos a la prueba es pequeña o se desconoce la verdadera varianza de las diferencias, tendrás que utilizar una prueba\(t\)-t emparejada.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tomas muestras de la misma persona antes y después de un tratamiento médico, ¿qué tipo de prueba podrías utilizar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tienes un grupo de control y un grupo de tratamiento, ¿qué tipo de prueba podrías utilizar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tienes gemelos y uno de ellos está en el grupo de control y el otro en el grupo de tratamiento, ¿qué tipo de prueba podrías utilizar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando tienes muestras independientes, ¿qué tipo de prueba podrías hacer?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando tus muestras son dependientes, ¿qué tipo de prueba podrías hacer?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tienes un tamaño de muestra de \(13\) y estás haciendo una prueba \(t\)-pareada, ¿cuántos grados de libertad hay?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que tienes \(15\) alumnos y les preguntas sobre sus hábitos de estudio antes y después de que se les presente una nueva herramienta de aprendizaje. ¿Cuál es el tamaño de la muestra para el test pareado (t)?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué necesitas para hacer una prueba \(t\)-pareada?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de los siguientes es un buen indicio de que necesitas utilizar una prueba \(t\)-?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

En tu centro de trabajo creen que los trabajadores a distancia no son tan productivos como los trabajadores presenciales. Les gustaría organizar una prueba \(t\)-pareada para comprobar esta creencia. ¿Cuál de las siguientes opciones sería adecuada?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tomas muestras de la misma persona antes y después de un tratamiento médico, ¿qué tipo de prueba podrías utilizar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tienes un grupo de control y un grupo de tratamiento, ¿qué tipo de prueba podrías utilizar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tienes gemelos y uno de ellos está en el grupo de control y el otro en el grupo de tratamiento, ¿qué tipo de prueba podrías utilizar?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando tienes muestras independientes, ¿qué tipo de prueba podrías hacer?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Cuando tus muestras son dependientes, ¿qué tipo de prueba podrías hacer?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tienes un tamaño de muestra de \(13\) y estás haciendo una prueba \(t\)-pareada, ¿cuántos grados de libertad hay?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Supón que tienes \(15\) alumnos y les preguntas sobre sus hábitos de estudio antes y después de que se les presente una nueva herramienta de aprendizaje. ¿Cuál es el tamaño de la muestra para el test pareado (t)?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Qué necesitas para hacer una prueba \(t\)-pareada?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuál de los siguientes es un buen indicio de que necesitas utilizar una prueba \(t\)-?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

En tu centro de trabajo creen que los trabajadores a distancia no son tan productivos como los trabajadores presenciales. Les gustaría organizar una prueba \(t\)-pareada para comprobar esta creencia. ¿Cuál de las siguientes opciones sería adecuada?

Mostrar respuesta

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Prueba t pareada

  • Tiempo de lectura de 9 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Supuestos de la prueba t pareada

    Es importante saber cuándo necesitas una prueba emparejada en lugar de una prueba más estándar. Si

    • controlas a una persona antes y después de un tratamiento, o

    • estás utilizando a un gemelo como control y al otro como sujeto de la prueba,

    entonces utilizarías una prueba \(t\)-emparejada.

    En un experimento emparejado te interesa la diferencia entre los resultados, más que los resultados en sí.

    Supongamos que en tu escuela te hacen un examen previo, luego te enseñan la información y luego te hacen el examen real. La escuela está intentando ver si la enseñanza es realmente eficaz. En otras palabras, los alumnos son los sujetos del examen, el tratamiento es la enseñanza, y a la escuela le interesa la diferencia entre los resultados del pre-test y los del examen real.

    Si no hay diferencia entre los resultados del pre-test y los del examen real, la escuela sabrá que tiene que cambiar la forma de enseñar la información.

    El principal supuesto para utilizar una prueba t emparejada, aparte del hecho de que tienes datos emparejados, es que las diferencias en los datos se distribuyen normalmente.

    Definición de prueba t pareada

    Una prueba \(t\)-t emparejada, también conocida como prueba \(t\)-t de muestras emparejadas, se utiliza para comparar si la diferencia de medias entre pares de medidas es cero o no.

    Lossujetos emparejados, también llamados muestras emparejadas o pares emparejados, son dos mediciones que no son independientes entre sí.

    En el ejemplo anterior, la escuela se fijaría en la puntuación del examen previo de un alumno concreto y la compararía con la puntuación real del examen de ese alumno. Esas dos puntuaciones no son independientes, porque se trata del mismo alumno que realiza tanto la preprueba como el examen real. Las dos puntuaciones son pares coincidentes.

    Si tuvieras muestras independientes, entonces utilizarías una prueba de hipótesis diferente. Consulta el artículo Prueba de hipótesis para dos distribuciones normales en el caso de muestras independientes.

    Aunque los pares emparejados no sean independientes, las diferencias en las medidas deben ser independientes. ¿Qué significa esto?

    En el ejemplo de los exámenes, tendrías que suponer que los alumnos no se hacen trampas unos a otros. Si el alumno A hiciera trampas en los exámenes del alumno B, las diferencias entre la puntuación del pre-test y la del examen de los alumnos A y B no serían independientes. En ese caso, no podrías utilizar una prueba \(t\)-pareada.

    Dado que uno de los supuestos para utilizar una prueba t pareada es que las diferencias se distribuyen normalmente, puedes tratar las diferencias como si fueran una muestra aleatoria de una distribución t, y luego hacer la prueba de hipótesis como si tuvieras una sola muestra. Para más información sobre cómo hacer este tipo de prueba de hipótesis, consulta el artículo Prueba de hipótesis para la diferencia entre dos medias.

    En general, cuando haces una prueba \(t\)-pareada no conocerás la varianza de la población, y el número de pares emparejados será relativamente pequeño.

    Pruebas t emparejadas frente a no emparejadas

    Es muy importante comprender cuándo se utiliza una prueba t estándar frente a una prueba t emparejada. Recuerda que una prueba t no emparejada se utiliza para comparar las medias de dos muestras independientes y determinar si existe una diferencia significativa entre ambas.

    La diferencia clave entre las pruebas \( t\) emparejadas y no emparejadas es que las pruebas\ (t\)emparejadas prueban en la diferencia entre la media de dos muestras.

    Supongamos que quieres saber si al cambiar la distribución de una tienda de ropa es más probable que la gente compre en esa tienda. Quieres comparar las ventas antes y después de cambiar la distribución. Los dos conjuntos de datos no son independientes (estás comparando las ventas antes y después), por lo que se utilizaría una prueba \(t\)-pareada.

    Por otra parte, si quieres ver si dos tiendas diferentes que tienen una distribución similar tienen un número similar de personas que compran en ellas, utilizarías una prueba \(t\)-no emparejada, porque las muestras son independientes.

    ¿Qué pasa con los grados de libertad de la prueba?

    Pruebas t emparejadas : grados de libertad

    Una prueba t pareada funciona exactamente igual que una prueba t normal a la hora de calcular los grados de libertad. Los grados de libertad son iguales al tamaño de la muestra menos \(1\): \(\upsilon =n-1\).

    Entonces, ¿qué es \(n\)? En una prueba \(t\)-pareada, las dos muestras tomadas comparten el mismo tamaño muestral, por lo que \(n\) es sólo el número de pares emparejados.

    Fórmula de la prueba t emparejada

    Por supuesto, es útil tener una definición más formal de la fórmula de una prueba t emparejada.

    En un experimento pareado en el que \(n\) es pequeño y \(\sigma ^2) es desconocido, si la diferencia entre dos medias poblacionales, \(D\), se distribuye como \(\text{N}(\mu _D, \sigma ^2)\), entonces

    \[t=\dfrac{\bar{D}-\mu _D}{\dfrac{S}{\sqrt{n}}}\sim t_{n-1}\]

    donde \(\bar{D}\) es la media de las diferencias entre las dos muestras.

    La clave aquí es que tendrás que tomar lamedia de las diferencias en lugar de la media de las muestras reales.

    Ejemplos de pruebas t de muestras pareadas

    Veamos un par de ejemplos.

    Supongamos que intentas ver si una loción medicada para la piel funciona mejor que una no medicada. Así que reúnes a un grupo de \(20\) personas con piel seca en los pies. Durante una semana, se frotan el pie izquierdo con una loción cutánea medicada y el pie derecho con una loción cutánea no medicada. Al final de la semana, compruebas el nivel de sequedad de cada pie. ¿Es ésta una situación en la que utilizarías una prueba \(t\)-pareada?

    Solución

    Observa que el tamaño de la muestra es relativamente pequeño y que no conoces la varianza de las poblaciones. Así que está indicada una prueba \(t\)-pareada. La cuestión es si utilizarías o no una prueba \(t) emparejada.

    Estás comprobando el nivel de sequedad del pie izquierdo y derecho de la misma persona, y observando la diferencia. Como estás observando los pies de la misma persona, se trata de datos apareados. Los datos que recoges de una persona son independientes de los datos que recoges de otra persona, por lo que las diferencias son independientes. Por tanto, puedes utilizar una prueba \(t\)-pareada siempre que supongas que las diferencias de los datos se distribuyen normalmente.

    ¿Y si la situación cambia un poco?

    Supongamos que intentas ver si una loción medicada para la piel funciona mejor que una no medicada. Así que reúnes a un grupo de \(20\) personas con piel seca en los pies. Durante una semana, la mitad de ellos se frotan los pies con una loción cutánea medicada, y la otra mitad del grupo se frota los pies con una loción cutánea no medicada. Al final de la semana, compruebas el nivel de sequedad de los pies de las personas. ¿Es ésta una situación en la que utilizarías una prueba \(t\)-pareada?

    Solución

    Observa que la principal diferencia entre este ejemplo y el anterior es que no hay emparejamiento. En realidad tienes dos grupos separados de sujetos que reciben tratamientos diferentes, y no hay forma de emparejar los datos de forma significativa. Así que, aunque el pequeño tamaño de la muestra indicaría que se utilizaría una prueba \(t\), no sería una prueba \(t\) emparejada.

    Prueba T emparejada - Puntos clave

    • Para hacer una prueba T pareada, necesitarás que los datos sean pareados, que las diferencias entre las medidas sean independientes y que las diferencias tengan una distribución aproximadamente normal.
    • Los grados de libertad de una prueba \(t\)-pareada son \(\upsilon =n-1\).
    • En un experimento pareado en el que \(n\) es pequeño y \(\sigma ^2) es desconocido, si la diferencia entre dos medias poblacionales, \(D\), se distribuye como \(\text{N}(\mu _D, \sigma ^2)\), entonces\[t=\dfrac{\bar{D}-\mu _D}{\dfrac{S}{\sqrt{n}}} \sim t_{n-1}]donde \(\bar{D}\) es la media de las diferencias entre las dos muestras.
    Preguntas frecuentes sobre Prueba t pareada
    ¿Qué es una prueba t pareada?
    Una prueba t pareada compara las medias de dos muestras relacionadas para determinar si existen diferencias significativas entre ellas.
    ¿Cuándo se usa una prueba t pareada?
    Se usa cuando se quiere comparar las medias de dos conjuntos de datos relacionados, como medidas antes y después de un tratamiento en las mismas personas.
    ¿Cómo se interpreta el resultado de una prueba t pareada?
    Si el p-valor es menor que el nivel de significancia, se rechaza la hipótesis nula y se concluye que hay una diferencia significativa.
    ¿Qué supuestos deben cumplirse para realizar una prueba t pareada?
    Los datos deben ser pares y las diferencias de cada par deben estar distribuidas normalmente.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    Si tomas muestras de la misma persona antes y después de un tratamiento médico, ¿qué tipo de prueba podrías utilizar?

    Si tienes un grupo de control y un grupo de tratamiento, ¿qué tipo de prueba podrías utilizar?

    Si tienes gemelos y uno de ellos está en el grupo de control y el otro en el grupo de tratamiento, ¿qué tipo de prueba podrías utilizar?

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 9 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.