Regla Empírica

Supón que tienes un conjunto de datos que se distribuye aproximadamente con normalidad. Supón también que conoces la desviación típica del conjunto de datos. ¿Hay mucho que puedas discernir sobre los datos a partir de esta información? Pues, de hecho, hay bastante, gracias a la regla empírica.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Regla Empírica

  • Tiempo de lectura de 7 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    La regla empírica puede utilizarse para juzgar la probabilidad de ciertos valores en un conjunto de datos, así como para comprobar si hay valores atípicos en tu conjunto de datos y mucho más. ¿Qué es la regla empírica y cómo se relaciona con las distribuciones normales y las desviaciones típicas?

    Definición de la regla empírica

    La regla empírica recibe varios nombres, a veces se denomina regla del \(95 \%\), regla de los tres sigmas o regla del \(68\)-\(95\)-\(99,7\).

    Suele denominarse regla empírica, ya que es una regla basada en muchas observaciones de conjuntos de datos, no una prueba matemática lógica o definitiva.

    La regla empírica es una regla estadística basada en observaciones que muestran que casi todos los datos de una distribución normal de datos se sitúan dentro de las tres desviaciones típicas de la media.

    ¿De dónde vienen los otros nombres? Bueno, hay aún más cosas que la regla empírica puede decirte, y las pistas están en los nombres. Se trata de los porcentajes y la desviación típica.

    Porcentajes de la regla empírica

    Como ya hemos dicho, uno de los nombres de la regla empírica es regla \ (68\)-\(95\)-\(99,7\). En realidad, este nombre es bastante revelador cuando examinamos la regla empírica en su totalidad. Dice así

    Para un conjunto de datos distribuidos normalmente, aproximadamente \(68\%\) de las observaciones se sitúan dentro de una desviación típica de la media, aproximadamente \(95\%\) de las observaciones se sitúan dentro de dos desviaciones típicas de la media , y aproximadamente \(99,7\%\) de las observaciones se sitúan dentro de tres desviaciones típicas de la media.

    \(68\%\), \(95\%\), \(99,7\%\), ¿lo pillas?

    Si recuerdas esos tres porcentajes, podrás utilizarlos para inferir todo tipo de conjuntos de datos con distribución normal.

    Pero espera un momento, a veces también se llama regla de los tres sigmas, ¿a qué viene eso?

    Bueno, el símbolo de la desviación típica es sigma, \(\sigma\). A veces se llama regla de los tres sigmas porque afirma que casi todas las observaciones se sitúan a tres sigmas de la media.

    Es una convención habitual considerar atípicas las observaciones que se sitúan fuera de esas tres sigmas . Esto significa que no son observaciones típicamente esperadas, y no son indicativas de la tendencia general. En algunas aplicaciones, el listón de lo que se considera un valor atípico puede estar explícitamente establecido en otra cosa, pero tres sigmas es una buena regla general.

    Veamos qué aspecto tiene todo esto puesto en un gráfico.

    Gráfico de la distribución normal con regla empírica

    Tomemos como ejemplo la siguiente distribución normal con una media de \(m\) y una desviación típica de \(\sigma\).

    La regla empírica Gráfico simple de distribución normal StudySmarterFig. 1. Curva de distribución normal .

    Es posible dividirla según la regla empírica.

    La regla empírica Un gráfico de distribución normal dividido según la regla empírica StudySmarterFig. 2. La regla empírica.

    Esta representación gráfica demuestra realmente las principales conclusiones que podemos sacar de la regla empírica. Está muy claro que prácticamente todas las observaciones se sitúan dentro de las tres desviaciones típicas de la media. Muy de vez en cuando puede haber valores atípicos, pero son extremadamente raros.

    La mayor parte se encuentra claramente entre \(-\sigma\) y \(\sigma\), tal como establece la regla empírica.

    Puede que estés pensando: "¡Genial, esta regla parece útil, voy a utilizarla todo el tiempo! Pero ten cuidado. La regla empírica sólo es válida para los datos que se distribuyen normalmente.

    Ejemplos de regla empírica

    Veamos algunos ejemplos para ver cómo podemos poner todo esto en práctica.

    (1) Se miden las estaturas de todas las alumnas de una clase. Se comprueba que los datos tienen una distribución aproximadamente normal, con una altura media de 1,5 m y una desviación típica de 1,2. Hay 12 alumnas en la clase. En la clase hay 12 alumnas.

    ( a) Utilizando la regla empírica, ¿cuántas de las alumnas están aproximadamente entre \(1,65 m,2) y \(1,65 m,4)?

    ( b) Utilizando la regla empírica, ¿cuántos alumnos están aproximadamente entre \(1,5 m,8 m) y \(1,5 m)?

    (c) Un alumno tiene una altura de \(1,5m,9m), ¿puede considerarse un caso atípico?

    Solución:

    (a ) \(5ft\,4\) es la media más una desviación típica. La regla empírica establece que \(68\%\) de las observaciones caerán dentro de una desviación típica de la media. Como la pregunta sólo se refiere a la mitad superior de este intervalo, será \(34\%\). Por tanto,

    \[0,34 \cdot 12 = 4,08\]

    El número de alumnas de la clase con una estatura comprendida entre \(1,65 m,2\) y \(1,65 m,4\) es \(4\).

    (b ) \(4ft\,8\) es la media menos dos desviaciones típicas, y \(5ft\) es la media menos una desviación típica. Según la regla empírica, \(95\%\) de las observaciones caen dentro de dos desviaciones típicas de la media, y \(68\%\) de las observaciones caen dentro de una desviación típica de la media.

    Como la pregunta sólo se refiere a las mitades inferiores de estos intervalos, pasan a ser \(47,5\%\) y \(34\%\) respectivamente. El intervalo que buscamos es la diferencia entre estos dos.

    \[47.5\% - 34\% = 13.5\%\]

    Por tanto,

    \[0,135 \cdot 12 = 1,62\%]

    El número de alumnas de la clase con una estatura comprendida entre \(4ft\,8\) y \(5ft\) es \(1\).

    (c ) \(5ft\,9\) es más de \(3\) desviaciones típicas mayor que la media, por lo que esta alumna puede considerarse un valor atípico.


    (2 ) Un ecólogo registra anualmente la población de zorros de un bosque durante diez años. Comprueba que, por término medio, hay \(150\) zorros viviendo en el bosque en un año determinado de ese período, con una desviación típica de \(15\) zorros. Los datos tienen una distribución aproximadamente normal.

    ( a) Según la regla empírica, ¿qué intervalo de tamaño de la población cabría esperar a lo largo de los diez años?

    (b ) ¿Cuáles de los siguientes se considerarían valores poblacionales periféricos?

    \[ 100, \space 170, \space 110, \space 132 \]

    Respuesta:

    (a) Según la regla empírica, cualquier observación que no esté dentro de las tres desviaciones típicas de la media suele considerarse un valor atípico. Por tanto, nuestro rango es

    \[ \mu - 3\sigma < P < \mu + 3\sigma\]

    \[150 - 3 \cdot 15 < P < 150+ 3 \cdot 15\]

    \[150-45 < P < 150+45\]

    \[105 < P < 195\]

    (b ) \(100\) es el único que no está dentro de las tres desviaciones típicas de la media, por tanto es el único valor atípico.

    Regla empírica - Puntos clave

    • La regla empírica establece que, para conjuntos de datos distribuidos normalmente, \(68\%\) de las observaciones se sitúan dentro de una desviación típica de la media, \(95\%\) de las observaciones se sitúan dentro de dos desviaciones típicas de la media, y \(99,7\%\) de las observaciones se sitúan dentro de tres desviaciones típicas de la media.
    • También se conoce como regla \(68\%\)-\(95\%\)-\(99,7\%\), regla de los tres sigmas y regla \(95\%\).
    • Normalmente, cualquier observación que no esté dentro de las tres desviaciones típicas de la media puede considerarse un valor atípico.
    Aprende más rápido con las 0 tarjetas sobre Regla Empírica

    Regístrate gratis para acceder a todas nuestras tarjetas.

    Regla Empírica
    Preguntas frecuentes sobre Regla Empírica
    ¿Qué es la Regla Empírica en matemáticas?
    La Regla Empírica, también conocida como la Regla 68-95-99.7, describe cómo los datos se distribuyen en una curva normal.
    ¿Cómo se aplica la Regla Empírica?
    La regla se aplica indicando que el 68% de los datos está dentro de una desviación estándar de la media, el 95% dentro de dos, y el 99.7% dentro de tres.
    ¿Para qué sirve la Regla Empírica?
    Sirve para realizar estimaciones rápidas y entender la distribución de datos en estudios estadísticos y probabilísticos.
    ¿Cuál es un ejemplo de la Regla Empírica?
    Un ejemplo es que si la media de los resultados de un examen es 70 y la desviación estándar es 5, entonces aproximadamente el 95% de los estudiantes tendrán puntuaciones entre 60 y 80.
    Guardar explicación

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 7 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.