La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
Una distribución binomial es una función de distribución de la probabilidad que se utiliza cuando hay exactamente dos resultados posibles de un ensayo que se excluyen mutuamente. Los resultados se clasifican como éxito y fracaso, y la distribución binomial se utiliza para obtener la probabilidad de observar \(x\) éxitos en \(n\) ensayos.Intuitivamente, se deduce que, en el caso de una distribución…
Explore our app and discover over 50 million learning materials for free.
Guarda la explicación ya y léela cuando tengas tiempo.
GuardarLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenUna distribución binomial es una función de distribución de la probabilidad que se utiliza cuando hay exactamente dos resultados posibles de un ensayo que se excluyen mutuamente.
Los resultados se clasifican como éxito y fracaso, y la distribución binomial se utiliza para obtener la probabilidad de observar \(x\) éxitos en \(n\) ensayos.
Intuitivamente, se deduce que, en el caso de una distribución binomial, la variable aleatoria \(x\) puede definirse como el número de éxitos obtenidos en los ensayos.
Esta distribución es muy importante, ya que aparece en muchos tipos de ensayos y experimentos que pueden ser realizados, donde solo hay dos posibles resultados.
Se puede modelar la variable aleatoria \(x\), con una distribución binomial \(B(n,p)\), si:
Hay un número fijo de ensayos, \(n\).
Hay dos resultados posibles, como éxito o fracaso, cara o cruz, \(0\) o \(1\).
Hay una probabilidad fija de éxito, \(p\), para todos los ensayos.
Los ensayos son independientes.
Si una variable aleatoria \(x\) tiene la distribución binomial \(B(n,p)\), su función de densidad de probabilidad viene dada por:
\[P(x)=^nC_xp^x(1-p)^{n-x}\]
Hay que tener en cuenta algunas cosas sobre la fórmula anterior:
\(^nC_x=\dfrac{n!}{n(n-x)!}\)
Donde \(n!=n(n-1)(n-2)(n-3)...(3)(2)(1)\) representa el número de formas de seleccionar r resultados exitosos de \(n\) ensayos posibles.
En la fórmula de la distribución binomial anterior, a menudo \(n\) se llama índice y \(p\)se llama parámetro.
El número \(x\) representa el número de eventos con un resultado específico; por ejemplo, que sean un éxito o un fallo.
La fórmula anterior se puede resumir en la siguiente expresión:
\[P_{(x)}=\begin{pmatrix} n\\x\end{pmatrix} p^xq^{n-x}\]
donde:
\(n\) es la cantidad de eventos o experimentos.
\(x\) es la cantidad de éxitos o aciertos.
\(p\) es la probabilidad de éxito en una prueba.
\(q\) es la probabilidad de fracaso en una prueba.
Veamos un ejemplo de distribución binomial, para aclarar las cosas.
Supongamos que la probabilidad de que a una persona seleccionada al azar le guste el helado de caramelo es de \(0,3\). Seleccionamos \(100\) personas al azar y preguntamos a cada una de ellas si le gusta el helado de caramelo.
Solución
Dibujemos la distribución binomial para el escenario anterior.
En este caso:
\[p=0,3\]
\[n=100\]
El siguiente gráfico muestra la distribución binomial para:
\[X\sim B(100,0,3)\]
Fig. 1. Gráfico de la distribución binomial \(X ~ B (100, 0,3)\).
Ahora, analicemos la distribución binomial anterior con un poco más de profundidad.
Se lanza un dado justo cinco veces. Construye una distribución binomial para encontrar la probabilidad de obtener la misma cara un número determinado de veces.
Solución:
Aquí podemos definir un éxito como el evento de obtener una cara determinada en el ensayo. La probabilidad de sacar una cara concreta (éxito) es:
\[p=\dfrac{1}{6}\]
Tenemos que construir la función de distribución binomial para:
\[X~B(5, \frac{1}{6})\]
Para este ejemplo, vamos a construir la distribución binomial calculando el valor de \(P(r=x)\), para cada \(r\), aplicando la fórmula de la función de masa de probabilidad.
Comenzamos con: \(r=0\)
\[P(X=0)=^nC_rp^r(1-p)^{n-r}\]
\[P(X=0)=^5C_0\frac{1}{6}(1-\frac{1}{6})^{5-0}\]
\[P(X=0)=\frac{5!}{0!5!}\frac{1^0}{6}(1-\frac{5}{6})^{5}\]
\[P(X=0)=0,4818\]
ahora, \(r=1\)
\[P(X=1)=^nC_rp^r(1-p)^{n-r}\]
\[P(X=1)=^5C_1 \left( \frac{1}{6} \right)^1 \left( 1-\frac{1}{6}\right)^{5-1}\]
\[P(X=1)=\frac{5!}{1!4!} \left( \frac{1}{6} \right)^1 \left( 1-\frac{5}{6}\right)^{4} \]
\[P(X=1)=0,4019\]
Luego, \(r=2\)
\[P(X=2)=^nC_rp^r(1-p)^{n-r}\]
\[P(X=2)=^5C_2 \left( \frac{1}{6} \right)^2 \left( 1-\frac{1}{6}\right)^{5-2}\]
\[P(X=2)=\frac{5!}{2!3!} \left( \frac{1}{6} \right)^2 \left( 1-\frac{5}{6}\right)^{3} \]
\[P(X=2)=0,1608\]
ahora, \(r=3\)
\[P(X=3)=^nC_rp^r(1-p)^{n-r}\]
\[P(X=3)=^5C_3 \left( \frac{1}{6} \right)^3 \left( 1-\frac{1}{6}\right)^{5-3}\]
\[P(X=3)=\frac{5!}{3!2!} \left( \frac{1}{6} \right)^3 \left( 1-\frac{5}{6}\right)^{2} \]
\[P(X=3)=0,0322\]
Luego, \(r=4\)
\[P(X=4)=^nC_rp^r(1-p)^{n-r}\]
\[P(X=4)=^5C_4 \left( \frac{1}{6} \right)^4 \left( 1-\frac{1}{6}\right)^{5-4}\]
\[P(X=4)=\frac{5!}{4!1!} \left( \frac{1}{6} \right)^4 \left( 1-\frac{5}{6}\right)^{1} \]
\[P(X=4)=0,0322\]
Ahora, \(r=5\)
\[P(X=5)=^nC_rp^r(1-p)^{n-r}\]
\[P(X=5)=^5C_5 \left( \frac{1}{6} \right)^5 \left( 1-\frac{1}{6}\right)^{5-5}\]
\[P(X=5)=\frac{5!}{5!0!} \left( \frac{1}{6} \right)^5 \left( 1-\frac{5}{6}\right)^{0} \]
\[P(X=5)=0,0001\]
Como podemos observar, la función de probabilidad no es simétrica, porque la probabilidad de obtener una cara no es 0,5 sino 1/6.
Para la variable aleatoria que presenta una distribución binomial: \(X~B(8; 0,4)\)
Encuentra:
\[P(X=3)\]
\[P(X=0)\]
Solución:
\[P(X=3)=^nC_rp^r(1-p)^{n-r}=^8C_3(0,4)^3(1-(0,4))^{8-3}\]
\[P(X=3)=\dfrac{8!}{3!5!}(0,4)^3(0,6)^5=0,279\]
\[P(X=0)=^nC_rp^r(1-p)^{n-r}=^8C_0(0,4)^0(1-(0,4))^{8-0}\]
\[P(X=0)=\dfrac{8!}{0!8!}(0,4)^0(0,6)^8=0,017\]
Una función de distribución de probabilidad acumulada para una distribución binomial \(X¬B(n,p)\) te da la suma de todas las probabilidades individuales hasta el punto \(x\); inclusive, para el cálculo de \(P(X \leq x)\) . Esto implica que la probabilidad acumulada en un punto \(r\) de una distribución binomial dará la probabilidad de que el número de aciertos sea menor o igual a \(r\).
La fórmula de la función de probabilidad binomial acumulada es:
\[\sum^x _{i=0}= ^nC_i p^i (1-p)^{n-i}\]
Volvamos a un ejemplo anterior, pero esta vez dibujaremos la función de distribución binomial acumulativa.
Supongamos que la probabilidad de que a una persona seleccionada al azar le guste el helado de caramelo es de \(0,3\). Seleccionamos \(100\) personas al azar y preguntamos a cada una de ellas si le gusta el helado de caramelo.
Soluciones:
Dibujemos la función de distribución binomial acumulativa para el escenario anterior.
En este caso:
\[p=0,3\]
\[n=100\]
El siguiente gráfico muestra la distribución binomial acumulada para:
\[X\sim B(100; 0,3)\]
Fig. 2. Distribución binomial acumulada para \(X ~ B (100, 0,3)\).
Analicemos la anterior distribución binomial acumulativa con un poco más de profundidad.
Para cualquier \(r(0 \leq r \leq 100)\), \(P(X=r)\) da la probabilidad de que a un número o menos personas les guste el helado de caramelo, de entre \(100\) personas seleccionadas al azar.
La probabilidad de que a \(20\) o menos personas les guste el helado de caramelo de cada \(100\) es del \(1,65%\).
La probabilidad de que a \(30\) o menos personas les guste el helado de caramelo de \(100\) es del \(54,91%\) .
La probabilidad de que a \(40\) o menos personas les guste el helado de caramelo de cada\(100\)es del \(98.75%\).
(Los valores exactos son, por supuesto, difíciles de descifrar en el gráfico anterior, pero estos son los valores que se utilizaron para trazarlo).
Se lanza una moneda justo cinco veces. Crea una tabla que muestre la distribución binomial acumulativa para hallar la probabilidad de obtener menos o igual que un determinado número de caras.
Solución:
Aquí podemos definir un éxito como el suceso de obtener una cara en el ensayo. Y la probabilidad de éxito es: \(p=0,5\).
Número de caras, \(r\) | 0 | 1 | 2 | 3 | 4 | 5 |
\(P(X=r)\) | 0,03125 | 0,15625 | 0,3125 | 0,3125 | 0,15625 | 0,03125 |
Probabilidad acumulada \(P(X \leq r)\) | 0,03125 | 0,1875 | 0,5 | 0,8125 | 0,96875 | 1 |
Por tanto, para hallar la probabilidad de una distribución acumulada, pueden calcularse las probabilidades individuales y luego sumarlas; o también se pueden utilizar tablas de distribución binomial acumulada, en las cuales se recogen los valores para cada valor de \(p\), \(x\) y \(n\).
Una distribución binomial es una función de distribución de la probabilidad, que se utiliza cuando hay exactamente dos resultados posibles de un ensayo que se excluyen mutuamente.
Las características que se cumplen en la distribución binomial son:
Hay un número fijo de ensayos, n.
Hay dos resultados posibles, como éxito o fracaso, cara o cruz, 0 o 1.
Hay una probabilidad fija de éxito, p, para todos los ensayos.
Los ensayos son independientes.
Las características que se cumplen en la distribución binomial son:
Hay un número fijo de ensayos.
Hay dos resultados posibles, como éxito o fracaso, cara o cruz, 0 o 1.
Hay una probabilidad fija de éxito, para todos los ensayos.
Los ensayos son independientes.
La distribución binomial se utiliza en situaciones en las que solo pueda haber dos resultados excluyentes entre sí. Por ejemplo: el que un equipo gane o pierda un partido, el sexo de un bebé, el lanzamiento de una moneda al aire...
Una distribución binomial es una función de distribución de la probabilidad que se utiliza cuando hay exactamente dos resultados posibles de un ensayo que se excluyen mutuamente.
La función de distribución de probabilidad binomial es la función que relaciona el suceso con la probabilidad acumulada.
de los usuarios no aprueban el cuestionario de Distribución binomial... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
How would you like to learn this content?
Free matematicas cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.
Guarda las explicaciones en tu espacio personalizado y accede a ellas en cualquier momento y lugar.
Regístrate con email Regístrate con AppleAl registrarte aceptas los Términos y condiciones y la Política de privacidad de StudySmarter.
¿Ya tienes una cuenta? Iniciar sesión