Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Teorema de la probabilidad total

Teorema de la probabilidad total

En las empresas de fabricación de coches, muchas veces ocurren fallos en la producción. Por esto mismo, se hacen controles de calidad por cada lote de producto. Pero, una misma empresa puede tener varias fábricas y cada fábrica producir cantidades distintas de coches. Entonces, si de un lote al azar de todas las fábricas se elige un coche, ¿cuál sería la probabilidad de que el coche elegido tenga un fallo?

Este es un problema típico sobre el teorema de la probabilidad total. Cuando tienes un suceso (que un coche tenga un fallo) que puede producirse en distintas particiones (cada una de las fábricas), hay que tener en cuenta la probabilidad de que el coche sea de una fábrica en concreto y la probabilidad de obtener un coche con fallo.

En este artículo te enseñaremos cómo resolver este problema. También introduciremos en el tema de diagramas de árbol, puesto que ésta es una herramienta muy útil para entender el problema que tenemos delante. Así que, ¡empecemos!

Teorema de la probabilidad total definición

Para entender el teorema de la probabilidad total tienes que tener claro el concepto de la probabilidad condicionada. Por eso, daremos un ligero repaso.

Probabilidad condicionada

Si \(A\) y \(B\) son dos sucesos dentro de un experimento aleatorio, la probabilidad de \(A\) condicionada por \(B\) es:

\[P(A|B)=\dfrac{P(A\cap B)}{P(B)}\]

Por supuesto, podemos operar con esta fórmula para llegar a:

\[P(A\cap B)=P(B)·P(A|B)\]

Que, a su vez, es lo mismo que:

\[P(A\cap B)=P(A)·P(B|A)\]

Esto se lee como: la probabilidad de que ocurran a la vez los sucesos \(A\) y \(B\) es la probabilidad de que ocurra \(A\) multiplicada por la probabilidad de que ocurra \(B\), que está condicionada por la ocurrencia de \(A\).

De una bolsa que tiene 6 pelotas verdes y 8 pelotas amarillas se sacan dos de ellas, una a una y sin reemplazo. ¿Cuál es la probabilidad de que la primera pelota sea verde y la segunda amarilla?

Solución:

Definimos los sucesos:

\(A\) = "La primera pelota es verde".

\(B\) = "La segunda pelota es amarilla".

El número de bolas total es 14. Por tanto:

\[P(A\cap B)=P(A)·P(B|A)=\dfrac{6}{14}·\dfrac{8}{13}=\dfrac{48}{182}\approx 0{,}26\]

Entonces, hay aproximadamente un 26% de probabilidad de que la primera sea verde y la segunda, amarilla.

Partición de un espacio muestral

Una vez que hemos entendido la probabilidad condicionada, podemos explicar lo que es la partición del espacio muestral.

Los sucesos \(A_1\), \(A_2\), ..., \(A_n\) forman una partición del espacio muestral \(E\), si cumplen con que:

  • Son incompatibles entre sí: \(A_i\cap A_j=\varnothing\), para todo \(i\neq j\).
  • Todos suman el espacio muestral: \(A_1\cup A_2\,\cup\, ... \cup \,A_n=E\).

Viendo un ejemplo, lo entenderás fácilmente.

Los trabajadores de una empresa se dividen en 5 departamentos distintos. Se podría elegir un trabajador al azar y anotar el departamento en el que trabaja.

Los sucesos que llamamos \(A_j\) son "pertenecer al departamento \(j\)" y forman una partición del espacio muestral, puesto que la unión de todos los departamentos \(A_1\cup A_2\cup A_3\cup A_4\cup A_5=E\) forman el espacio muestral que sería ser un trabajador de la empresa (todos los departamentos juntos forman la totalidad de la empresa). Además los sucesos son incompatibles entre sí, porque un trabajador no puede ser de dos departamentos a la vez.

Teorema de la probabilidad total fórmula

Una vez que tenemos los conceptos anteriores ya entendidos, podemos pasar al teorema de la probabilidad total.

Se tienen los sucesos \(A_1, A_2, ..., A_n\), que forman una partición del espacio muestral \(E\); todos estos sucesos con probabilidad distinta de cero. Se tiene \(B\), que es un suceso cualquiera del espacio muestral; entonces, la probabilidad de \(B\) es:

\[P(B)=P(A_1)·P(B|A_1)+P(A_2)·P(B|A_2)+...+P(A_n)·P(B|A_n)\]

Esta es la regla o teorema de la probabilidad total.

Esto quiere decir que la probabilidad de un suceso que puede darse en cualquiera de las particiones es la suma de la probabilidad de tener esa partición, multiplicada por la probabilidad de tener ese suceso en esa partición en concreto.

Vamos a solucionar el problema del principio de este artículo para que entiendas mejor el teorema.

Una empresa de fabricación de coches tiene tres fábricas. La primera fábrica produce un \(40%\) del total de coches y la segunda fábrica produce otro \(15%\) del total. Por cada lote de producción se hace un control de calidad en todas las fábricas. En la primera fábrica, un \(0,05%\) de los coches analizados son defectuosos; en la segunda fábrica, esta cantidad asciende al \(0,08%\); mientras que en la tercera fábrica, baja al \(0,04%\).

¿Cuál es la probabilidad de coger un coche al azar y que sea defectuoso?

Solución:

Este problema se resuelve utilizando el teorema de la probabilidad total. Podemos ver que la partición del espacio muestral son cada una de las fábricas:

\(F_1\) = "Producido en la fábrica 1".

\(F_2\) = "Producido en la fábrica 2".

\(F_3\) = "Producido en la fábrica 3".

Como podemos observar, se trata de una partición, puesto que las producciones de las tres fábricas forman la producción de toda la empresa. Además, las producciones en las fábricas son incompatibles entre sí, porque un mismo producto no puede producirse en dos fábricas distintas a la vez.

Ahora, podemos asignar probabilidades para entender los datos que tenemos y lo que nos piden:

Probabilidad de haberse producido en la fábrica 1: \(P(F_1)=0{,}4\)

Probabilidad de haberse producido en la fábrica 2: \(P(F_2)=0{,}15\)

Probabilidad de haberse producido en la fábrica 3: \(P(F_3)=0{,}45\)

Probabilidad de haberse producido en la fábrica 1 y ser defectuoso: \(P(D|F_1)=0{,}05\)

Probabilidad de haberse producido en la fábrica 2 y ser defectuoso: \(P(D|F_2)=0{,}08\)

Probabilidad de haberse producido en la fábrica 3 y ser defectuoso: \(P(D|F_3)=0{,}04\)

Ahora, podemos calcular la probabilidad de escoger un coche de cualquier fábrica y que sea defectuoso, usando la fórmula de la probabilidad total:

\[P(D)=P(F_1)·P(D|F_1)+P(F_2)·P(D|F_2)+P(F_3)·P(D|F_3)\]

\[P(D)=0{,}4·0{,}05+0{,}15·0{,}08+0{,}45·0{,}04=0{,}05\]

Por tanto, la probabilidad de escoger un coche al azar y que sea defectuoso es del 5%.

Teorema de la probabilidad total y teorema de Bayes

Encontrarás el teorema de Bayes explicado en nuestro artículo del mismo nombre. Sin embargo, al ser un teorema muy importante y estar íntimamente relacionado con el teorema de la probabilidad total, lo explicaremos aquí brevemente.

Realmente, el teorema de Bayes se basa en el teorema de la probabilidad total, pero de manera inversa. Usamos la probabilidad de algo que ya sabemos para calcular la probabilidad del suceso del cual procede.

Si \(A_1\), \(A_2\), ..., \(A_n\) son los sucesos de una partición del espacio muestral \(E\) y se conoce la probabilidad de un suceso \(B\), la probabilidad del suceso \(A_j\) condicionada por el suceso \(B\) viene dada por:

\[P(A_i|B)=\dfrac{P(A_i\cap B)}{P(B)}=\dfrac{P(A_i)·P(B|A_i)}{P(A_1)·P(B|A_1)+P(A_2)·P(B|A_2)+...+P(A_n)·P(B|A_n)}\]

Como puedes ver en la fórmula anterior, el teorema de la probabilidad total se aplica en el denominador.

Vamos a hacer un ejemplo muy parecido al anterior, para que veas la diferencia.

Una empresa de fabricación de coches tiene tres fábricas; la primera fábrica produce un \(40%\) del total de coches y la segunda fábrica produce otro \(15%\) del total.

Por cada lote de producción, se hace un control de calidad en todas las fábricas. En la primera fábrica, un \(0,05%\) de los coches analizados son defectuosos; en la segunda fábrica, esta cantidad asciende al \(0,08%\); mientras que en la tercera fábrica, baja al \(0,04%\).

Se elige un coche al azar y resulta que es defectuoso. ¿Cuál es la probabilidad de que este coche venga de la primera fábrica?

Solución:

Como puedes observar, la diferencia con el problema anterior es que ya sabemos que el producto es defectuoso; por tanto, lo que queremos encontrar es la probabilidad de que proceda de la primera fábrica.

Primero, asignamos probabilidades (como anteriormente) para hacer todo más claro:

Probabilidad de haberse producido en la fábrica 1: \(P(F_1)=0{,}4\)

Probabilidad de haberse producido en la fábrica 2: \(P(F_2)=0{,}15\)

Probabilidad de haberse producido en la fábrica 3: \(P(F_3)=0{,}45\)

Probabilidad de haberse producido en la fábrica 1 y ser defectuoso: \(P(D|F_1)=0{,}05\)

Probabilidad de haberse producido en la fábrica 2 y ser defectuoso: \(P(D|F_2)=0{,}08\)

Probabilidad de haberse producido en la fábrica 3 y ser defectuoso: \(P(D|F_3)=0{,}04\)

Ahora, lo que buscamos es la probabilidad de que \(F_1\) esté condicionado por \(D\); es decir, que el defecto sea de la primera fábrica:

\[P(F_1|D)=\dfrac{P(F_1)·P(D|F_1)}{P(D)}=\dfrac{P(F_1)·P(D|F_1)}{P(F_1)·P(D|F_1)+P(F_2)·P(D|F_2)+P(F_3)·P(D|F_3)}\]

\[P(F_1|D)=|dfrac{0{,}4·0{,}05}{0{,}4·0{,}05+0{,}15·0{,}08+0{,}45·0{,}04}=\dfrac{0{,}4·0{,}05}{0{,}05}=0{,}4\]

Por tanto, la probabilidad de que el coche defectuoso provenga de la primera fábrica es del \(40%\).

Teorema de la probabilidad total: ejercicios resueltos

Vamos a hacer un ejercicio más sobre el teorema de la probabilidad total, para que practiques este concepto.

Se tienen tres cajas con bolas negras y blancas. En la primera caja hay 8 bolas negras y 4 bolas blancas; en la segunda caja hay 5 bolas negras y 6 bolas blancas; y en la tercera caja hay 7 bolas negras y 4 bolas blancas. Calcula la probabilidad de sacar una bola al azar de cualquier caja y que sea negra.

Solución:

Primero vamos a aplicar el teorema de la probabilidad total para resolver este problema.

Podemos sumar todas las bolas para saber el total; esto es 34 bolas. Sabiendo la cantidad de bolas que hay en cada caja, podemos asignar las siguientes probabilidades:

  • Probabilidad de sacar una bola de la caja 1: \(C_1=\dfrac{12}{34}\)
  • Probabilidad de sacar una bola de la caja 2: \(C_2=\dfrac{11}{34}\)
  • Probabilidad de sacar una bola de la caja 3: \(C_3=\dfrac{10}{34}\)
  • Probabilidad de cada color en la caja 1: \(N=\dfrac{8}{12}\), \(B=\dfrac{4}{12}\)
  • Probabilidad de cada color en la caja 2: \(N=\dfrac{5}{11}\), \(B=\dfrac{6}{11}\)
  • Probabilidad de cada color en la caja 3: \(N=\dfrac{7}{10}\), \(B=\dfrac{4}{10}\)

Vamos ahora a calcular la probabilidad de sacar una bola negra que sea de cualquier caja:

\[\begin{align} P(N)&=P(B_1)·P(N|B_1)+P(B_2)·P(N|B_2)+P(B_3)·P(N|B_3)=\\&=\dfrac{12}{34}·\dfrac{8}{12}+\dfrac{11}{34}·\dfrac{5}{11}+\dfrac{10}{34}·\dfrac{7}{10}=\dfrac{20}{34}\approx 0{,}56\end{align}\]

Por tanto, hay un 56% de probabilidades de sacar una bola negra.

Hemos calculado esta probabilidad usando el teorema de la probabilidad total. Pero, realmente este problema es mucho más sencillo: como tenemos los números de cuántas bolas hay en cada sitio, y nos da igual de qué caja coger la bola, podríamos haber sumado el número total de bolas negras y ver cuántas hay en proporción al número total de bolas:

\[P(N)=\dfrac{\text{nº de bolas negras}}{\text{nº total de bolas}}=\dfrac{8+5+7}{34}=\dfrac{20}{34}\]

Así, comprobamos que obtenemos el mismo resultado, y puedes ver el teorema de la probabilidad total desde otra perspectiva y entender mejor lo que hace.

Teorema de la probabilidad total - Puntos clave

  • Si \(A\) y \(B\) son dos sucesos dentro de un experimento aleatorio, la probabilidad de \(A\) condicionada por \(B\) es:

    \[P(A|B)=\dfrac{P(A\cap B)}{P(B)}\]

  • Los sucesos \(A_1\), \(A_2\), ..., \(A_n\) forman una partición del espacio muestral \(E\), si cumplen con que:

    • Son incompatibles entre sí: \(A_i\cap A_j=\varnothing\), para todo \(i\neq j\).

    • Todos suman el espacio muestral: \(A_1\cup A_2\,\cup\, ... \cup \,A_n=E\).

  • Se tienen los sucesos \(A_1, A_2, ..., A_n\), que forman una partición del espacio muestral \(E\); todos estos sucesos con probabilidad distinta de cero. Se tiene \(B\), que es un suceso cualquiera del espacio muestral; entonces, la probabilidad de \(B\) es:

    \[P(B)=P(A_1)·P(B|A_1)+P(A_2)·P(B|A_2)+...+P(A_n)·P(B|A_n)\]

    Esta es la regla o teorema de la probabilidad total.

  • El teorema de Bayes nos dice que si \(A_1\), \(A_2\), ..., \(A_n\) son los sucesos de una partición del espacio muestral \(E\) y se conoce la probabilidad de un suceso \(B\), la probabilidad del suceso \(A_j\) condicionada por el suceso \(B\) viene dada por:

    \[P(A_i|B)=\dfrac{P(A_i\cap B)}{P(B)}=\dfrac{P(A_i)·P(B|A_i)}{P(A_1)·P(B|A_1)+P(A_2)·P(B|A_2)+...+P(A_n)·P(B|A_n)}\]

Preguntas frecuentes sobre Teorema de la probabilidad total

El teorema de la probabilidad total nos da la probabilidad de un suceso que puede darse en cualquiera de las particiones, que es la suma de la probabilidad de tener esa partición multiplicada por la probabilidad de tener ese suceso en esa partición en concreto.

Para encontrar la probabilidad total del suceso B:

P(B)=P(A1)·P(B|A1)+P(A2)·P(B|A2)+...+P(An)·P(B|An)

El teorema de Bayes nos da la probabilidad de de los sucesos de una partición, ya sabiendo que el suceso B ha ocurrido.

Para encontrar la probabilidad total del suceso B:

P(B)=P(A1)·P(B|A1)+P(A2)·P(B|A2)+...+P(An)·P(B|An)

Cuestionario final de Teorema de la probabilidad total

Pregunta

¿Qué teorema usa el teorema de la probabilidad total para llegar a calcular la probabilidad de un suceso una vez que éste ya ha ocurrido?

Mostrar respuesta

Answer

El teorema de Bayes.

Show question

Pregunta

Con el teorema de la probabilidad total calculamos la probabilidad de que ocurra el suceso B en una partición concreta.

Mostrar respuesta

Answer

Falso.

Show question

Pregunta

Con el teorema de la probabilidad total calculamos la probabilidad de las particiones.

Mostrar respuesta

Answer

Falso.

Show question

Pregunta

¿A partir de qué concepto se extrae el teorema de la probabilidad total?

Mostrar respuesta

Answer

La probabilidad condicionada.

Show question

Pregunta

La fórmula de la probabilidad condicionada es:

Mostrar respuesta

Answer

\(P(A|B)=\dfrac{P(A\cap B)}{P(B)}\).

Show question

Pregunta

Una las condiciones que cumple una partición de un espacio muestral es:

Mostrar respuesta

Answer

Todos los sucesos que componen la partición suman el espacio muestra.

Show question

Pregunta

Una de las condiciones que cumple una partición de un espacio muestral es:

Mostrar respuesta

Answer

La intersección de todos los sucesos que componen la partición es el conjunto vacío.

Show question

Pregunta

Una partición de un espacio muestral está formado por dos sucesos. Expresa el espacio muestral en función de la partición.

Mostrar respuesta

Answer

\(E=A_1\cup A_2\).

Show question

Pregunta

Una partición de un espacio muestral está formada por dos sucesos. Expresa la intersección entre los sucesos de la partición.

Mostrar respuesta

Answer

\(A_1\cap A_2=\varnothing\).

Show question

Pregunta

En la fórmula del teorema de Bayes se encuentra la fórmula del teorema de la probabilidad total, ¿dónde?

Mostrar respuesta

Answer

En el denominador.

Show question

Pregunta

Te preguntan por la probabilidad de un que suceso que ha ocurrido en una partición, pertenezca a uno de los sucesos de la partición. ¿Qué teorema usas para calcular esta probabilidad?

Mostrar respuesta

Answer

El teorema de Bayes.

Show question

Pregunta

Te preguntan por la probabilidad de que se dé un suceso que puede ocurrir en cualquiera de las particiones de un espacio muestral. ¿Qué teorema usas?

Mostrar respuesta

Answer

El teorema de la probabilidad total.

Show question

Pregunta

¿Cuál es la fórmula del teorema de la probabilidad total?

Mostrar respuesta

Answer

\(P(B)=P(A_1)·P(B|A_1)+P(A_2)·P(B|A_2)+...+P(A_n)·P(B|A_n)\).

Show question

Pregunta

¿En qué tipo de experimentos puede aplicarse el teorema de la probabilidad total?

Mostrar respuesta

Answer

En experimentos aleatorios.

Show question

Pregunta

Los sucesos que forman una partición de un espacio muestral cumplen:

\(A_i\cup A_j=\varnothing\).

Mostrar respuesta

Answer

Falso.

Show question

60%

de los usuarios no aprueban el cuestionario de Teorema de la probabilidad total... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.