Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

Función de densidad

Función de densidad

Las probabilidades, generalmente, no son las mismas para una variable que puede tomar varios resultados en un intervalo \([a, b]\). La función que define estas probabilidades tiene un nombre específico: función de densidad.

Qué es una función de densidad

La función de densidad es parecida a una función en análisis o cálculo. La función \(F\) nos dice la probabilidad de que una variable aleatoria \(X\) tenga cierto valor \(Y\). Si lo observas bien, esto es muy parecido al cálculo. En este caso:

\[F(X)=Y\]

Ahora, en sentido estricto, su definición es:

La función de densidad es la función de una variable cuyo resultado es la probabilidad de que esta variable obtenga un resultado específico.

Por ejemplo, si la variable \(X\) es la altura de los alumnos de una escuela, que cubre el rango de \([1{,}5\,\mathrm{m}, 2{,}0\,\mathrm{m}]\), \(F(1{,}7\,\mathrm{m})\) nos dará como resultado la probabilidad de que un alumno mida \(1{,}7\,\mathrm{m}\), supongamos.

\(F(1{,}7\,\mathrm{m})=0{,}12\).

Hay algunas características importantes que debes saber:

  • El área bajo la curva de la función de densidad es uno, ya que la probabilidad total debe ser del \(100\%\).

  • El resultado de la función de probabilidad es siempre positivo, ya que no existen probabilidades negativas.

Cuando te refieras a estas funciones, por lo general te referirás a distribuciones continuas, como la distribución normal o la normal estándar.

Función de densidad de una variable aleatoria continua

La función de densidad de una variable aleatoria continua es, como su nombre indica, continua. En este punto, cualquier valor en un rango \([a, b]\) tiene siempre la posibilidad de ser un resultado; esto es, resultado de la continuidad.Debido a que la función es continua.

  • La función puede ser definida como una integral.

  • Los límites de la integral son el rango posible de los valores.

La fórmula que define esto es:

\[P(a \leq X \leq b)= \int_a^b f(x) dx\]

Se tiene una función de probabilidad que describe el peso de cabezas de ganado en una granja. La cabeza menor pesa \(180\, \mathrm{kg}\) y la mayor \(430\, \mathrm{kg}\). ¿Cuáles son los límites de la función de densidad que describen la probabilidad de que al pesar una cabeza de ganado obtengamos un valor de \(300\,\mathrm{kg}\)?

Solución:

Debido a que las cabezas de ganado pesan entre \(180\,\mathrm{kg}\) y \(430\,\mathrm{kg}\), los límites de la integral son:

\[P(a \leq X \leq b)= \int_{180}^{430} f(x) dx\]

También podemos definir la media y la varianza de una distribución de densidad continua como:

\[\mu= \int_{-\infty}^{\infty} xf(x) dx\]

\[\sigma^2= \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx=\int_{-\infty}^{\infty} x^2 f(x)dx-\mu^2 \]

¿Cómo calcular la función de densidad?

Generalmente, en tus primeros cursos verás dos tipos de funciones:

  • Una función de distribución normal

    • \(f(x)\) toma la siguiente forma:

      \[F(X)=\dfrac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]

      El dominio de esta función es \(-\infty<x<\infty\).

  • Una función que te será dada como una función arbitraria \(f(x)\).

    • Podría ser cualquier función: en este caso muchos de tus ejemplos no tendrían por qué darte un área igual a uno, ya que será un ejemplo arbitrario.

Moda de una función de densidad

La moda en probabilidad es el dato que más aparece en un experimento.

Por ejemplo, si se tiene un experimento cuyos valores son \(v=\{1, 4, 5, 8, 2, 3, 5, 6, 7, 1, 3, 8, 9, 3, 7, 2, 8, 3\}\), la moda es \(3\), ya que aparece más veces.

Sin embargo, en este caso lo que se tiene es una distribución discreta, ya que solo se toman valores enteros.

En el caso de una distribución continua, como la distribución normal u otras distribuciones, la moda será el valor \(P(X)\). Esto, porque la probabilidad es más alta; en cierto sentido, este es un máximo de la función de densidad.

Para la distribución normal o la normal estandarizada la moda será, de hecho, la media:

\[\mu= \int_a^b xf(x) dx\]

Esto lo puedes ver en la siguiente imagen, donde el máximo está en la media.

Funciones de densidad normal StudySmarter

Fig. 1. Imagen de la distribución normal.

Función de densidad ejemplos

Hagamos algunos ejemplos sencillos en los que calcules la media, la desviación estándar y la probabilidad en un rango dado.

Calcula la probabilidad de que una variable aleatoria obtenga valores entre la media y la desviación estándar, si esta es una distribución normal, cuya media es cero y desviación estándar es veinte.

Solución:

Primero, debemos recordar que la función de densidad de una distribución normal es:

\[\dfrac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]

La integral de esta nos dará:

\[\dfrac{1}{\sigma \sqrt{2\pi}} -2 \sigma^2e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]

Si evaluamos esta integral, sustituyendo \(\mu=0\), \(\sigma=20\) en los límites \([0, \sigma]\), obtendremos:

\[\dfrac{1}{\sigma \sqrt{2\pi}} -2 \sigma^2e^{-\frac{(\sigma-0)^2}{2\sigma^2}}\]

\[\dfrac{1}{\sigma \sqrt{2\pi}} -2 \sigma^2e^{-\frac{(0-0)^2}{2\sigma^2}}\]

Restando ambos tendremos:

\[0{,}34…\]

Esto significa que entre la media y la desviación estándar vive un \(34%\) de los datos. Si se toma en cuenta cada lado de la media, esto es un \(68%\) de los datos.

Calcula la función que nos da la media de la distribución cuya función es \(f(x)=x^2+3x-2\).

Solución:

Para esto, debemos aplicar la fórmula:

\[\mu= \int_a^b xf(x) dx\]

Lo cual nos da:

\[\mu= \int_a^b x(x^2+3x-2) dx\]

\[\mu= \int_a^b (x^3+3x^2-2x) dx\]

La integral nos da:

\[\mu=\dfrac{x^4}{4}+\dfrac{3x^3}{3}-\dfrac{2x^2}{2} \]

Y, simplificando, esto es:

\[\mu=\dfrac{x^4}{4}+x^3-x^2 \]

Esto habría que evaluarlo entre los límites \(a\) y \(b\).

¿Cuál es el valor de la integral que cubre el rango de valores posibles \([a, b]\) de la distribución normal estandarizada?

Solución:

En este caso, no se nos da la función; pero, por otra parte, sabemos que al área total de la integral debe ser \(100\%\), por lo cual esto es un área igual a uno.

Funciones de densidad - Puntos clave

  • La función de densidad es la función de una variable cuyo resultado es la probabilidad que esta variable obtenga un resultado específico.
    • El área bajo la curva de la función de densidad es uno, ya que la probabilidad total debe ser \(100\%\).
    • El resultado de la función de probabilidad es siempre positivo, ya que no existen probabilidades negativas.
  • También podemos definir la media y la varianza de una distribución de densidad continua como:
    • \[\mu= \int_a^b xf(x) dx\]
    • \[\sigma^2= \int_a^b (x-\mu)^2 f(x) dx\]
  • La moda, en probabilidad, es el dato que más aparece en un experimento.
    • Para la distribución normal o la normal estandarizada la moda será de hecho la media.

Preguntas frecuentes sobre Función de densidad

La función de densidad es la función de una variable cuyo resultado es la probabilidad de que esta variable obtenga un resultado específico.

Generalmente, la función de densidad te será dada como una función; pero, en muchos experimentos se asume que esta es una función de densidad que representa una distribución normal.

Para graficar la función de densidad se debe graficar la probabilidad de los valores en el eje y y el rango que toman los valores en el eje x. En el caso de la distribución normal es más sencillo, ya que se conoce la función f(x) y se requieren como parámetros la desviación estándar, la media y el rango en el que viven los posibles valores.

Dos ejemplos son: la distribución normal, que es continua, y la distribución de rayleigh.

Generalmente, te es dada; si no es así, se asume que probablemente sea alguna distribución conocida como la normal o la de rayleigh.

Cuestionario final de Función de densidad

Pregunta

En una función de densidad que sigue una distribución normal, la moda es igual a:

Mostrar respuesta

Answer

La media.

Show question

Pregunta

Para una función de densidad que sigue una distribución normal, la probabilidad de un dato \(a\) que no es la media \(\mu\) es igual a:

Mostrar respuesta

Answer

\(P(a)<P(\mu)\).

Show question

Pregunta

Para cualquier distribución continua de probabilidad, ¿el valor de la probabilidad de la moda es mayor o menor que cualquier otro dato \(a\)?

Mostrar respuesta

Answer

Es mayor.

Show question

Pregunta

¿Cuál es la probabilidad total que una variable continua \(X\) tome cualquier valor en el rango en el cual esta existe?

Mostrar respuesta

Answer

\(100\%\).

Show question

Pregunta

Si se tiene una distribución continua de tipo normal en el intervalo \([a, -a]\), ¿cuál es la probabilidad de que la variable aleatoria \(X\) que define esta distribución tome un valor en el rango \([-a, \mu]\)?

Mostrar respuesta

Answer

\(50\%\).

Show question

Pregunta

¿Cuál es la probabilidad de obtener un resultado \(y=200\) a partir de una función de densidad con dominio \([-100, 100]\)?

Mostrar respuesta

Answer

Cero, debido a que una función de densidad sólo puede dar valores en el intervalo \([0,1]\).

Show question

Pregunta

¿Se dice que una función de densidad es continua en el dominio \([a, b]\) puede esta tomar cualquier valor?

Mostrar respuesta

Answer

Sí, debido a que es continua puede tomar cualquier valor siempre y cuando esté dentro del dominio \([a,b]\).

Show question

Pregunta

¿Cómo se define la función de densidad de una variable aleatoria?

Mostrar respuesta

Answer

\(P(a \leq X \leq b)= \int_a^b f(x) dx\).

Show question

Pregunta

¿Cómo se define la varianza usando la integración y la definición de una función de densidad continua?

Mostrar respuesta

Answer

\(\sigma^2= \int_a^b (x-\mu)^2 f(x) dx\).

Show question

Pregunta

¿Cómo se define la media usando la integración y la definición de una función de densidad continua?

Mostrar respuesta

Answer

\(\mu= \int_a^b xf(x) dx\).

Show question

Pregunta

¿Cuál es la función de densidad de una distribución normal?

Mostrar respuesta

Answer

\(F(X)=\dfrac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\).

Show question

Pregunta

¿Cuál es la función de densidad de una distribución normal con media igual a cero?

Mostrar respuesta

Answer

\(F(X)=\dfrac{1}{\sigma \sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}\).

Show question

Pregunta

Si integras la función de densidad siguiente en los límites en los cuales \(X\) existe, ¿cuál es el resultado?

\[F(X)=\dfrac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]

Mostrar respuesta

Answer

\(1\).

Show question

60%

de los usuarios no aprueban el cuestionario de Función de densidad... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.