Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

Distribución Normal Estandar

Distribución Normal Estandar

¿Qué ocurre si vas a tu clase y empiezas a medir la estatura de tus compañeros? Las medidas deberían ir entre un valor mínimo (que es lo que mide tu compañero más pequeño) y un valor máximo (que es lo que mide el más alto).

Ahora, divide este rango entre un número. Digamos que este número es \(13\); es decir, en este caso, las alturas de la persona más pequeña a la más alta están agrupadas en \(13\) secciones como:

\[\Delta = \dfrac{a-b}{13}\]

donde,

\(a\) = más alto

\(b\) = más pequeño

Así tendrías grupos en los que la gente entra según su altura, como, por ejemplo:

\[1: a + \dfrac{a-b}{13}\]

\[2: a +2 \dfrac{a-b}{13}\]

\[3: a + 3 \dfrac{a-b}{13}\]

\[...\]

\[1: a +13 \dfrac{a-b}{13}\]

Los histogramas y su utilidad

Supongamos, ahora, que usas una gráfica de barras (es decir, un histograma) en la que la altura de la barra corresponde a cuántas personas están en ese grupo. En ese caso, tendrías lo siguiente: donde \(V\) es el número de personas en cierto grupo de cada barra \(N\), \( N\) crece de izquierda a derecha, siendo la gente con menor altura el grupo de la barra \(1\) y la barra con símbolo \(13\) muestra la gente con mayor altura:

Distribución normal estándar distribución normal figura StudySmarterFig 1. Distribución normal de un conjunto de datos: se puede observar una forma de campana, aunque no sea bien definida.

¿Ves la forma que siguen las barras? Esta forma es conocida como distribución normal.

Usamos un histograma para este ejemplo. Pero, una distribución normal es continua; es decir, es una línea que sigue la forma de la campana que verás en la figura 2.

Distribución normal de probabilidad

La distribución normal es una distribución de probabilidad continua, que puede presentarse en un gráfico donde el eje de la \(y\) representa el número de eventos y \(x\) representa el valor de los eventos.

Distribución normal estándar media desviación estándar StudySmarterFig. 2. La distribución normal sigue una forma de campana invertida, su media que es m divide los datos a la mitad, la desviación estándar σ nos sirve para obtener cuántos datos existen entre la media de la población y cierto valor de la desviación.

En el caso de la distribución normal estándar, esta es una variante de la distribución normal que depende de la media y la desviación típica. La distribución comparte las mismas características que una distribución normal, como su simetría y su forma característica, pero requiere dos condiciones:

  1. La media es \(0\).
  2. La desviación típica o estándar es igual a \(1\).

La desviación estándar

Para poder hablar de los intervalos de confianza, primero debemos hablar de la desviación estándar y la media.

La media de una población es el valor medio.

Veamos un ejemplo:

Si tienes \(5\) personas con las siguientes estaturas:

\[Estaturas={1.4, 1.43, 1.56, 1.8, 1.7}\]

La media es la división de los \(5\) valores entre el número total de valores. Así que esto es:

\[m=\dfrac{suma}{5}=\dfrac{(1.4+1.43+1.56+1.8+1.7)}{5}=1.578\]

De la misma manera, si tienes una muestra más grande —digamos \(100\) personas—, tu media cambiaría. Pero, hay un valor que te puede decir la estatura por debajo de la media y por encima de la media, situación de alrededor de dos tercios de su población. Es decir, alrededor de \(66\) personas de las \(100\) están por encima de este mínimo y por debajo de este máximo.

Esto lo puedes ver en la imagen siguiente:

Distribución normal deviacion estándar StudySmarterFig. 3. Intervalos dentro de la desviación estándar.

Este valor es la desviación estándar y se usa como una medida de confianza: es decir, tu confías en que el \(66%\) de tus datos viva entre este valor mínimo y máximo alrededor de la media.

Si quieres saber cómo calcular la desviación estándar y saber más acerca de la media, no olvides leer nuestros otros artículos acerca de las medidas de tendencia central.

Intervalos de confianza

El intervalo de confianza es parecido a la desviación estándar; es un intervalo que nos dice la cantidad de datos que vive alrededor de la media. Para calcularlo se usa esta fórmula:

\[IC=m+z \dfrac{\sigma}{\sqrt{2}}\]

Aquí \(n\) es el tamaño de la muestra o la población. Por ejemplo, de las \(100\) personas a las cuales se les mide su estatura, este valor sería \(100\). Por su parte, el valor \(z\) es el intervalo de confianza que deseas; por ejemplo, si quieres un \(70%\).

Hay otro valor importante conocido como la varianza; esta es, simplemente, el cuadrado de la desviación estándar. Este valor es —al igual que la desviación estándar— una medida de dispersión; o, es decir, una medida que nos dice cómo se distribuyen los datos alrededor de la media. También existe el intervalo de confianza para la varianza: este es el intervalo para el cual estamos seguros —usando la varianza— de que cierto porcentaje de la población vive alrededor de la media.

Distribución normal tipificada

Otro nombre para la distribución normal estándar es distribución normal tipificada. Una gran ventaja de esto es que está estandarizada y existe una tabla que nos indica los valores que la probabilidad acumulada tiene en cada punto de la curva para los valores positivos de la curva. Esto hace más fácil cualquier cálculo, ya que solo debes leer la tabla.

z0,000,010,020,030,040,050,060,070,080,09
0,000,50,50400,50800,51200,51600,51990,52390,52790,53190,5359
0,100,53980,54380,54780,55170,55570,5960,56360,56750,57140,5753
0,20...

Tabla 1. La tabla de la distribución normal tipificada.

Esta sigue con filas hasta el valor de 0,9, aquí la hemos acortado porque sería demasiado larga para mostrar.

La tabla se sigue de modo que la probabilidad acumulada, que es al área bajo la curva, debe de leerse de las líneas a columnas. Si queremos obtener la probabilidad acumulada para los valores entre \(x=0\) y \(x=0.1\), debemos ir a la columna de la extrema izquierda, que tiene el valor de \(0.1\); debido a que no tenemos decimales, tenemos ahora que leer la columna superior que tiene el valor de \(0.0\).

Esto lo podemos ver en detalle en la tabla inferior:

z0,000,010,020,030,040,050,060,070,080,09
0,000,50,50400,50800,51200,51600,51990,52390,52790,53190,5359
0,100,53980,54380,54780,55170,55570,5960,56360,56750,57140,5753
0,20

Tabla 2. La tabla de la distribución normal tipificada.

Esta sigue con filas hasta el valor de 0,9, aquí encontramos que el valor requerido está en la columna 0,01 y renglones 0,00 y 0,10.

El resultado es, entonces:

Si quisiéramos medir la probabilidad acumulada en, tendríamos que leer los valores de:

z0,000,010,020,030,040,050,060,070,080,09
0,000,50,50400,50800,51200,51600,51990,52390,52790,53190,5359
0,100,53980,5430,54780,55170,55570,55960,56360,56750,57140,5753
0,20...

Tabla 3. La tabla de la distribución normal tipificada. Esta sigue con filas hasta el valor de 0,9,

aquí encontramos que el valor requerido está en la columna 0,01 y renglón 0.10.

El resultado es, entonces:

Cómo convertir una distribución normal a normal estándar

Como existe una tabla para poder calcular la probabilidad bajo la curva fácilmente, muchas veces es mejor convertir una distribución normal a una normal estándar. Para ello se hace algo llamado tipificar la variable. Para tipificar la variable se debe usar la siguiente fórmula:

\[z = \dfrac{x-\mu}{\sigma}\]

Esta fórmula transforma la variable anterior \(x\) a \(z\) y, con esto, puedes calcular la probabilidad más fácilmente.

Ejercicios para convertir distribución normal a normal estándar

Veamos un ejemplo para usar conversiones entre una distribución normal a una tipificada.

En un salón de clases la estatura de los alumnos sigue una distribución normal \(1.42, 2\), donde el primer dato es la media y el segundo es la desviación típica. Si queremos usar la tabla de probabilidades para facilitar nuestro trabajo, debemos convertir esto para poder obtener el porcentaje de personas que tiene otra estatura. ¿Qué porcentaje de esa población mide más de \(1.5m\)?

Solución

En este caso, la media es igual a \(1.42m\) y la desviación típica es \(2cm\).

Para poder convertir este valor y usar la distribución tipificada, usamos la fórmula:

\[z = \dfrac{x-\mu}{\sigma}\]

donde:

\[x=1.5m\]

\[\mu=1.42m\]

\[\sigma=2cm=0.02m\]

usando la fórmula, se tiene:

\[z = \dfrac{1.5-1.42}{0.02}=4\]

Esto significa que en la tabla tipificada tendríamos que buscar los valores en la columna izquierda de \(4.0\) y en la fila superior de \(0.00\).

Como nota, cabe decir que cuanto más lejos nos encontramos de \(1\) y la desviación estándar es pequeña, significa que nos acercamos al \(100%\).

Distribución normal estándar - Puntos clave

  • La distribución normal estándar es un tipo de distribución normal que tiene como características que su media es \(0\) y su desviación típica es igual a \(1\).
  • Se puede convertir una distribución normal a una distribución normal estándar tipificando la variable.
  • Cuando se tiene una distribución normal tipificada o estándar, la probabilidad acumulada en cierto punto se puede calcular usando una tabla de datos. Para leer la tabla se requiere leer la columna del extremo izquierdo y la del extremo superior. También, debes saber la variable \(z\) que deseas calcular de la tabla, esta variable es la desviación típica.
  • La variable nos dice la cantidad de eventos o resultados que caen aproximadamente dentro de cierto valor de la desviación típica. Supongamos que deseas leer cuántos datos caen a un valor de mitad de la desviación típica. En este caso, lo que debes hacer es buscar en la columna extrema izquierda el valor de \(0.5\) y, después, buscar en la fila del extremo superior el valor de \(0.00\). Donde ambos valores se cruzan, será el valor de la probabilidad hasta ese valor de \(z\).

Preguntas frecuentes sobre Distribución Normal Estandar

Es una distribución que sigue una disposición de datos donde el dato central (llamado media y que es el máximo) y los datos crecen y decrecen alrededor de esta, de modo que tiene una forma de campana invertida.

No hay una manera de saber cuándo usar una distribución normal. Sin embargo, la mayoría de los fenómenos en la naturaleza siguen esta distribución. Esto se debe a que los errores o efectos que causan valores mínimos o máximos alrededor de un valor media decrecen con la misma proporción alrededor de este.

Es el intervalo para el cual estamos seguros que cierto porcentaje de la población vive alrededor de la media, usando la varianza.

Significa que los datos de una muestra siguen una forma de campana invertida. Existe un dato llamado la media y el número de objetos en la muestra cuyos valores son mayores o menores que la media decrece del mismo modo, formando una curva, hasta llegar al valor de 0 en ambos lados.

También existe un valor llamado desviación estándar y alrededor del 68.2% de la población de la muestra vive en el rango m-σ y m+σ.

Cuestionario final de Distribución Normal Estandar

Pregunta

¿Cuál es la distribución normal?


Mostrar respuesta

Answer

La distribución normal es una distribución de probabilidad continua, que puede presentarse en un gráfico donde el eje de las y representa el número de eventos y \(x\) el valor de los eventos.


Show question

Pregunta

¿Qué forma tiene la distribución normal?




Mostrar respuesta

Answer

Campana.

Show question

Pregunta

¿Cuál es el valor de la media en la distribución normal?

Mostrar respuesta

Answer

\(0\).

Show question

Pregunta

¿Cuál es el valor de la desviación estándar para la distribución normal?

Mostrar respuesta

Answer

\(σ\).

Show question

Pregunta

Calcula la media de la siguiente lista de datos: \(\{1{,}2, 4{,}5, 2{,}3, 5{,}6, 7\}\).

Mostrar respuesta

Answer

\(4{,}12\).

Show question

Pregunta

Calcula la media de la siguiente lista de datos, si estos representan la altura de los alumnos de una clase: dos personas de un metro cincuenta, \(3\) tres personas de un metro con setenta, una persona de un metro con veinte, una persona de un metro con cincuenta y seis, dos personas con un metro con setenta y cuatro.

Mostrar respuesta

Answer

\(1.57\).

Show question

Pregunta

La desviación estándar se usa como una media de confianza. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

Al menos el \(90\%\) de la población de una distribución normal vive en un espacio que va desde \(-\sigma\) a \(\sigma\). ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso.

Show question

Pregunta

¿Cuál es la fórmula para convertir una distribución normal a una normal estándar?

Mostrar respuesta

Answer

\( z=\dfrac{x-μ}{σ}\) .

Show question

Pregunta

¿Cuál es el valor de \(z\) en una distribución tipificada, si se desea buscar en una población cuyo valor \(x\) es mayor que \(1.7 m\), con una con una media típica de \(1.6 m\) y una desviación estándar de \(10 cm\)?

Mostrar respuesta

Answer

\(1\).

Show question

Pregunta


¿Se debe usar una tabla cuando se trabaja en una distribución normal tipificada?



Mostrar respuesta

Answer

Sí.

Show question

Pregunta

¿Cuál es el valor de \(z\) en una distribución tipificada, si se desea buscar en una población cuyo valor \(x\) es mayor que \(1{,}87\text{ m}\), con una con una media típica de \(1{,}5\text{ m}\) y una desviación estándar de \(3 \text{ cm}\)?

Mostrar respuesta

Answer

\(12{,}33\).

Show question

Pregunta

¿Se puede convertir una distribución normal a una distribución tipificada?


Mostrar respuesta

Answer

Sí, para ello requieres saber la media y la desviación estándar.

Show question

Pregunta

¿Cuál es la fórmula para el intervalo de confianza?

Mostrar respuesta

Answer

\(IC=m+z \dfrac{σ}{√n}\).

Show question

Pregunta

¿Cuál es la fórmula para el intervalo de confianza para una muestra de \(200\) personas, con una media de \(1.65 m\), una desviación estándar de \(3 cm\) y un dato \(z\) de \(1.8 m\).



Mostrar respuesta

Answer

\(1.65\).

Show question

Conoce más sobre Distribución Normal Estandar
60%

de los usuarios no aprueban el cuestionario de Distribución Normal Estandar... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.