Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Tablas de contingencia

Tablas de contingencia

Supongamos que tienes un grupo \(M\), con varios subgrupos (\(A\), \(B\) y \(C\)) y objetos en estos grupos que pertenecen a otros grupos (\(a\), \(b\) y \(c\)). Por supuesto, no todos los objetos en \(A\) pertenecen a \(a\), algunos pertenecen a \(b\) u \(c\). Lo mismo ocurre con los demás grupos.

En este caso, ¿qué tal si escoges un objeto al azar, sin saber si es de \(A\), \(B\) o \(C\)? Además, una vez que lo eliges quieres saber cuál es la probabilidad de que este objeto —de un grupo que no conoces hasta que lo escoges— pertenezca a otro grupo \(a\), \(b\) o \(c\).

Suena algo difícil, ¿no es cierto? En primer lugar, no sabes si escoges \(A\), \(B\) o \(C\) y, además, cada objeto en ellos tiene ciertas probabilidades de ser parte de \(a\), \(b\) o \(c\): \[decisión \rightarrow escoger \rightarrow M\].

En cierto modo, tienes una combinación de probabilidades de escoger \(A\), \(B\) o \(C\); además, como cada uno pertenece en diferentes proporciones a otros grupos, también existe la otra probabilidad de que cuando escojas, por ejemplo \(A\), este sea parte de \(a\).

En los problemas donde tienes esta clase de encadenamiento existe una herramienta muy útil: las tablas de contingencia. En este artículo te hablaremos de ellas.

¿Qué es una tabla de contingencia?

En una tabla de contingencia se organizan los datos de grupos que están relacionados entre sí. Este tipo de tabla nos permite organizar fácilmente la información, para obtener las probabilidades de que al escoger un objeto \(x\), este pertenezca a alguno de los grupos pertinentes.

Veamos un ejemplo:

1. Se tiene un objeto \(x\), cuya cantidad es \(n\): este puede tener un valor de \(A\) o \(B\); además, puede tener las propiedades \(a\) y \(b\). Desarrolla su tabla de contingencia.

Solución

De acuerdo a nuestros datos, esto significa que hay cuatro posibilidades:

\[x=(A,a)\]

\[x=(A,b)\]

\[x=(B,a)\]

\[x=(B,b)\]

  • Cada vez que escogemos un objeto de \(x\), este puede ser parte de \(A\) y \(a\), parte de \(B\) y \(a\), parte de \(B\) y \(a\) o parte de \(B\) y \(b\).

Si has leído nuestros artículos de probabilidades, esto seguramente te recordará las operaciones con sucesos. Aquí, un suceso \(A\) se une contro suceso \(a\) —por ejemplo— para darte un resultado que es \(A,a\) o la unión de dos sucesos.

2. Ahora, organizaremos una tabla. Esta tendrá, en la primera columna y primera fila, las propiedades que puede tener el objeto \(x\). Entonces, escogemos que las propiedades \(A\) y \(B\) vayan en la primera fila y las propiedades \(a\) y \(b\) vayan en la primera columna.

\(A\)
\(B\)
Totales
\(a\)
\(b\)
totales

Tabla 1: Categorías que pueden obtener la variable \(x\).

3. En la tabla llenaremos los datos que nos dicen qué cantidad de objetos pertenecen a cada grupo; por ejemplo, el número de objetos que pertenecen a \(A\) y \(a\) van donde se interceptan ambos valores:

\(A\)
\(B\)
Totales
\(a\)
\(n(A, a)\)
\(b\)
totales

Tabla 2: Categorías que pueden obtener la variable \(x\), en este caso, la combinación de \(A\) y \(a\).

4. Como paso siguiente, llenamos la tabla con los valores para cada unión de grupos:

\(A\)
\(B\)
Totales
\(a\)
\(n(A, a)\)
\(n(B, a)\)
\(n_t(A+B, a)\)
\(b\)
\(n(A, b)\)
\(n(B, b)\)
\(n_t(A+B, b)\)
totales
\(n_t(A, a+b)\)
\(n_t(B, a+b)\)
\(n_t(x)\)

Tabla 3: Categorías que pueden obtener la variable \(x\).

5. Ya que tenemos todos los números, cada vez que queramos obtener las probabilidades de que un objeto que escogemos al azar tenga una combinación de propiedades, debemos hacer siguiente:

  • Se quiere saber si al escoger un objeto \(x\) este tiene las propiedades \(A\) y \(a\).

    • Para esto, se usa la frecuencia relativa: \(P(A\cap a)=\dfrac{n(A,a)}{nt(x)}\).

  • Se quiere saber la probabilidad de escoger un objeto \(x\) que pertenezca solo a un grupo \(B\) y tenga las propiedades de \(b\).

    • Para esto, se usa la fórmula: \(P(B|b)=\dfrac{n(B,b)}{nt(b)}\).

Ahora, que ya has seguido el ejemplo, podemos avanzar. Veamos los conceptos principales relacionados con la elaboración de una tabla de contingencia:

  • Gran total.

  • Frecuencias relativas conjunta.

  • Frecuencias marginales.

Gran total

Cuando se tiene un objeto o variable aleatoria que puede obtener los valores \(a\), \(b\) o \(c\) y esta variable se mide \(n\) veces, la suma de todos los resultados es el gran total.

Por ejemplo, si se mide \(x=a\) veinte veces y \(x=b\) diez veces, el gran total será treinta.

Por lo tanto,

El gran total es el número total de experimentos, mediciones o datos en una la muestra.

En el caso de la tabla de nuestra contingencia, el gran total está en la esquina inferior derecha:

\(A\)
\(B\)
Totales
\(a\)
\(b\)
totales
\(nt(x)\)

Tabla 4: el gran total es la suma de todos los eventos o mediciones y va en la esquina inferior derecha de la tabla.

\[nt(x)=gran \hspace{0.2cm} total\]

Los totales de las variables \(A\), \(B\), \(a\), \(b\) divididos entre el gran total te darán la probabilidad de obtener un objeto o medición con un valor determinado.

Por ejemplo \(\frac{nt(B, a-b)}{nt(x)}\) es la probabilidad de obtener una medición u objeto que pertenezca al grupo \(B\); esto, independientemente de su otro valor \((a, b)\).

Frecuencias marginales y relativas

Las frecuencias nos dicen cómo de frecuente es cierto valor en el total de los datos recabados, o mediciones hechas.

Frecuencias relativa marginales

La frecuencia relativa marginal es la frecuencia de que la variable pertenezca a cierto grupo que no sea la combinación de ningún grupo.

Por ejemplo, la población total que tiene características \(A\) sería una frecuencia total.

Entonces, si quieres averiguar la probabilidad de este valor en la población, debes dividir la frecuencia total de \(A\) entre el gran total: \[FT(A)=\dfrac{nt(A, a-b){nt(x)}\]

Frecuencia relativa conjunta

La frecuencia relativa conujnta se refiere a la frecuencia de que la variable \(x\) obtenga dos valores específicos; es, de hecho, una intersección.

Por ejemplo, la frecuencia de que la variable \(x\) tenga el valor de \(A\) y pertenezca al grupo \(a\) es: \[FRC(x)=\dfrac{n(A, a)}{nt(x)}\]

Asociación entre variables

En cierto sentido, lo que miden las frecuencias relativas es la asociación entre dos grupos; dos resultados cuyos valores se intersectan en un grupo \(x\).

Prueba de chi cuadrado

Cuando se tienen datos y probabilidades, una manera de intentar observar si los cambios en los datos se dan por azar, o debido a algún fenómeno que los afecte, es usar la prueba chi cuadrada. Esta prueba, por su contenido, está fuera del nivel usual de bachillerato; pero, te podemos explicar lo básico sobre esta, para que comprendas mejor el tema:

  • La prueba chi cuadrada nos permite comprobar si las observaciones en los datos obtenidos son los mismos que los calculados. Es decir: si se hace un experimento y se espera que los resultados caigan en ciertas categorías, se puede saber si estos resultados caen en las categorías o proporción esperada.

  • También, esta pa prueba nos permite saber si los cambios o resultados son causados por azar, o si hay una relación entre las variables que afecta estos resultados obtenidos y explica la diferencia con los resultados esperados.

Tablas de contingencia - Puntos clave

  • Una tabla de contingencia es una tabla en la que se organizan los datos de grupos que están relacionados entre sí.

  • La tabla nos permite calcular más fácilmente las frecuencias relativas entre variables categóricas.

  • La frecuencia relativa conjunta es el valor total de la frecuencia de que cierta variable aleatoria \(x\) tome un valor \(a\), independientemente de si este pertenece a otros dos conjuntos dentro de los resultados obtenidos. En este sentido, es una suma de los sucesos.

  • La frecuencia relativa marginal es el valor total de la frecuencia de que cierta variable aleatoria \(x\) tome valores que forman parte de dos conjuntos \(a\) y \(b\). En este sentido, es la intersección de los sucesos.

Preguntas frecuentes sobre Tablas de contingencia

Se trata de una tabla donde se organizan los datos de grupos que están relacionados entre sí. 


Con esta tabla se pueden calcular, más fácilmente, las frecuencias relativas y marginales de las variables categóricas.

  1. En la primera fila se escriben las categorías primarias de la variable aleatoria.
  2. En la primera columna se escriben  las categorías secundarias de la variable aleatoria.
  3. En los puntos donde se interceptan las variables se escribe el número de datos o resultados que satisfacen esta intersección. 
  4. En la última columna y última fila se escriben los resultados totales de cada variable categórica.
  5. En la esquina inferior derecha se escribe el total de los experimentos o mediciones.


Es el resultado de la frecuencia absoluta de una variable aleatoria en una categoría.

La asociación entre variables varía entre cero (no asociación) a uno (las variables están asociadas entre sí).

Cuestionario final de Tablas de contingencia

Pregunta

Si se tiene un objeto que puede tener las propiedades \(A, B\) y cada una las propiedades \(a,b,c\), ¿cuántas combinaciones existen de estos grupos?

Mostrar respuesta

Answer

\(6\).

Show question

Pregunta

Si se tiene un objeto que puede tener las propiedades \(A, B\) y cada una las propiedades \(a,b\), ¿cuántas combinaciones existen de estos grupos?

Mostrar respuesta

Answer

\(6\).

Show question

Pregunta

Si se tiene un objeto que puede tener las propiedades \(A, B\) y cada una las propiedades \(a,b\), existiendo cuatro combinaciones posibles, ¿cuál es la probabilidad de cada una de ellas?

Mostrar respuesta

Answer

\(100\%\).

Show question

Pregunta

Las probabilidades parciales de un subgrupo con ciertas características \((A,B)\) que pueden tener también las características \((a,b)\), son llamadas:

Mostrar respuesta

Answer

Frecuencia relativa.

Show question

Pregunta

Se tiene un grupo en el cual hay \(1000\) objetos, de estos una parte tiene el valor de \(A\) y otro el de \(B\), cada valor también puede obtener valores de \(a,b\) respectivamente como \(x=(A,b)\). Si de estos objetos hay \(327=B\), ¿cuál es la frecuencia relativa conjunta de \(A\) para cualquier valor en \(A\) sea \(a\) y \(b\)?

Mostrar respuesta

Answer

\[f=\dfrac{n_{tA}}{n_t}=673/1000\]

\[0,673\]

Show question

Pregunta

Si se tiene una medición que arroja dos categorías de una variable aleatoria \((C, D)\) y la variable aleatoria \(C\) tiene categorías dos categorías donde una de ellas es \(b\) con una población igual a \(b=23\), ¿cuál es la frecuencia relativa de la otra categoría de \(C\) si la población de esta categoría es un décimo del total de la población que es 370?

Mostrar respuesta

Answer

\[f=\dfrac{n_{t}}{(C,\overline{b})}\]

\[{n_t}=\dfrac{37-23}{370}\]

\[0,037\]

Show question

Pregunta

¿Qué es la frecuencia relativa conjunta?

Mostrar respuesta

Answer

Esta frecuencia es la frecuencia que la variable \(x\) obtenga dos valores específicos, es de hecho una intersección.

Show question

Pregunta

Se requiere categorizar los resultados, ¿se puede hacer uso de una tabla de contingencia?

Mostrar respuesta

Answer

Sí, debido a que esto permite el uso de las frecuencias relativas.

Show question

60%

de los usuarios no aprueban el cuestionario de Tablas de contingencia... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.