Regresión lineal

Supongamos que tienes una serie de datos que miden cuánto tiempo tarda en llegar el autobús. En la tabla de la estación nos dice que el autobús pasa cada 30 minutos. Pero, esto no siempre es exacto, porque puede haber contratiempos, tráfico o que el autobús esta vez vaya un poco más rápido. Por eso, llegará con una cierta variación cada vez (por más leve que sea).

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de Regresión lineal

  • Tiempo de lectura de 9 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    Podemos ver un ejemplo en al siguiente gráfica:

    Regresión lineal datos StudySmarterFig. 1. El tiempo que tarda en llegar el autobús es de \(t=0,5\) horas; mientras tanto, las ocasiones numeradas como \((A, B, C, D)\) muestran que el autobús llega alrededor de cada media hora, pero como hemos visto, no es exacto.

    Estas variaciones forman una dispersión de datos alrededor de \(0,5\).

    La dispersión de datos, en estadística, es la medida en la cual los datos recopilados varían con respecto a un valor central o esperado.

    Podría darse el caso en el que la dispersión se da, no en un valor constante, sino en un valor variable, creciente o decreciente. Si, por ejemplo, cada vez que pasa el autobús tardase diez minutos más, el valor aumentaría; además, no sabemos de antemano cuánto tarda o cuánto aumenta. Por tanto, lo único que podríamos hacer es recabar datos y representarlos para averiguar la relación cada vez que pasa el autobús y cómo aumenta el tiempo.

    Esto se puede ver en la gráfica siguiente:

    Regresión lineal dispersion StudySmarterFig. 2. Datos que muestran el tiempo que tarda en llegar un autobús. El valor esperado es \(y=0,5h\), pero los datos varían, porque hay valores mínimos y máximos. Esta variación es la dispersión.

    En estos casos, no sabremos la relación entre las variables; pero, podríamos averiguarla usando un método estadístico denominado regresión lineal.

    Ajuste lineal o regresión lineal

    En estadística y matemáticas, el ajuste o regresión lineal es un método que usarás para averiguar la relación lineal entre dos variables: \(y\) es la variable dependiente y \(x\) es la variable independiente.

    En el ajuste lineal se tienen \(n\) datos; por ejemplo, \(n=\{1{,}24, 2{,}2, 2{,}68, 3{,}91, 4{,}43, 6{,}2\}\), que son la respuesta de un experimento, sistema o modelo. Cada respuesta corresponde a una entrada; por ejemplo, \(x=\{1, 2, 3, 4, 5, 6\}\).

    Una gráfica de estos nos daría lo siguiente:

    Regresión lineal recta StudySmarterFig. 3. Datos que se ajustan a una recta de tipo \(y=ax+b\).

    Como se puede ver, la relación es casi lineal; pero, hay cierta dispersión entre los datos, si lo comparamos con la recta \(y=x\). La regresión lineal, en este caso, nos permite encontrar una función del tipo lineal \(y=mx+b\), que sea cercana a todos los datos que tenemos.

    Normalmente, en muchos casos no se conoce la función \(f(x)\), por lo que en usamos \(y=x\) por facilidad. Pero, incluso con estos datos tan cercanos, es posible que la recta que encontremos sea del tipo \(y=ax+b\), con valores que hacen que sea cercana a \(y=x\).

    Los métodos de regresión lineal no nos dan una idea fidedigna de la función, pero nos dan una relación muy cercana a la original. Muchas veces, después de la regresión lineal, se requiere trabajo de deducción para llegar a una función analítica.

    Una función analítica es aquella que modela exactamente \(y\), en términos de \(x\).

    Mínimos cuadrados

    Un método clásico para hacer un ajuste lineal es el de de mínimos cuadrados.

    El método de mínimos cuadrados es un método de regresión, o ajuste lineal, que busca reducir el valor de la suma del cuadrado, las distancias entre los datos y una recta que debe representar estos datos.

    Por ejemplo, si la recta que buscamos predice que el valor de \(y\) debe ser \(4\), pero el valor que obtenemos es \(y_{exp}=4,1\), la distancia \((4-4,1)^2\), sumada a las otras distancias, debe ser un valor mínimo para que esta línea sea óptima.

    Lo que busca este método es minimizar la función error cuadrático medio \(\text{ECM}\) que viene dada por:

    \[\text{ECM}=\sum_{i=1}^n (y_i-a-bx_i)^2\]

    Esta función es mínima donde su derivada sea igual a \(0\). Haciendo estos cálculos se llega a las expresiones para calcular los coeficientes \(a\) y \(b\):

    \[a=\dfrac{\displaystyle \sum_{i=1}^n x_iy_i-n\bar{x}\bar{y}} {\displaystyle\sum_{i=1}^n{x^2}-\dfrac{1}{n}\left(\sum_{i=1}^n{x}\right)^2}\]

    \[b=\bar{y}-a\bar{x}\]

    Donde \(\bar{x}\) es la media aritmética de los datos en \(x\) y \(\bar{y}\) es la media aritmética de los datos de \(y\).

    Estas medias se calculan como \(\bar{x}=\dfrac{1}{n}\sum x_i\) y \(\bar{y}=\dfrac{1}{n}\sum y_i\).

    Con todo esto, la recta de regresión lineal queda como:

    \[\hat{y}=ax+b\]

    Coeficiente de correlación o R

    Un número importante nos dice qué tan correcta es la recta encontrada en el coeficiente de correlación, también conocido como \(R\). Este coeficiente se calcula usando la siguiente fórmula:

    \[R=\dfrac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})} {\displaystyle\sqrt{\sum_{i=1}^n (x_i-\bar{x})^2} \sqrt{\sum_{i=1}^n(y_i-\bar{y})^2}}\]

    Aquí \(x_i\) y \(y_i\) son los datos y \(\bar{x}\) e \(\bar{y}\) son la media de ambos.

    El valor del coeficiente de correlación se mide entre \(R=-1\) y \(R=1\).

    Coeficiente de determinación y el residuo

    Si se eleva el valor de \(R\) al cuadrado, se obtiene una forma alternativa del coeficiente de correlación llamada, el coeficiente de determinación \(R^2\).

    Además de esto hay otro valor importante que es la varianza residual; esta es igual a:

    \[\dfrac{\sum (y_i - y_i’)^2}{n}\]

    Aquí \(y_i\) son los valores predichos por la recta ajustada y \(y_i’\) son los valores del experimento, o los datos recabados; \(n\) es el número total de datos.

    Cabe decir que mientras \(R^2\) sea más cercano a 1, la recta representa los datos de manera más cercana. También es importante decir que en un experimento aleatorio o con datos aleatorios que sigan un patrón lineal es prácticamente imposible que se obtenga un valor de \(R^2=1\), ya que hay errores que desviarán los datos.

    Regresión lineal ejemplos

    Hagamos un par de ejemplos, para que practiques la regresión lineal.

    Se tiene el siguiente conjunto de datos:

    \[y=\{2{,}2, 3{,}8, 6{,}3, 7{,}8\}\]

    \[x=\{2, 4, 6, 8\}\]

    Ajusta a una recta del tipo \(y=ax+b\) usando el método de mínimos cuadrados.

    Solución:

    Primero, debemos calcular cada parte de la fórmula:

    \[a=\dfrac{\displaystyle \sum_{i=1}^n x_iy_i-n\bar{x}\bar{y}} {\displaystyle\sum_{i=1}^n{x^2}-\dfrac{1}{n}\left(\sum_{i=1}^n{x}\right)^2}\]

    \[b=\bar{y}-a\bar{x}\]

    Luego, calculamos las medias:

    \[\bar{x}=\dfrac{2+4+6+8}{4}=5\]

    \[\bar{y}=\dfrac{2{,}2+3{,}8+6{,}3+7{,}8}{4}=5{,}025\]

    Si hacemos los sumatorios y sustituimos, obtenemos:

    \[a=\dfrac{ 119{,}8-4·5·5{,}025}{120-100}\]

    Y esto nos da:

    \[a=0{,}965\]

    Ahora, para calcular \(b\), usamos:

    \[b=\bar{y}-a\bar{x}\]

    Sustituyendo estos valores, tenemos:

    \[b=5{,}025-0{,}965·5=0{,}2\]

    Esto nos da la función:

    \[y=0{,}965x+0{,}200\]

    Como podemos ver, esto es una recta que es casi igual a \(y=x\). Esto está representado en la gráfica de la función:

    Regresión lineal recta StudySmarterFig. 4. Ajuste lineal de los datos para el ejemplo en el que estos forman la recta de regresión \(\hat{y}=0{,}965x+0{,}200\).

    Calcula el residuo del ajuste lineal de los siguientes datos:

    \[y=\{4{,}5, 6{,}7, 7{,}4, 8{,}7, 9{,}6\}\]

    \[x=\{1, 2, 3, 4, 5\}\]

    Donde la recta ajustada es \(y= 1{,}22x+3{,}72\).

    Solución:

    Para poder hacer este ejercicio, debes calcular los valores de \(y\) para cada valor de \(x\) usando la función \(y= 1{,}22x+3{,}72\).

    Para esto, debes de sustituir \(x=\{1, 2, 3, 4, 5\}\), lo que nos da: \[y’=\{4{,}94, 6{,}16, 7{,}38, 8{,}6, 9{,}82\}\]

    Ahora, debemos de usar la fórmula del residuo que es:

    \[\dfrac{\sum (y_i - y_i’)^2}{n}\]

    Aquí sustituiremos cada valor de los datos \(y_i’\) y lo restamos al valor predicho \(y_i\); también, elevaremos esto al cuadrado y lo sumamos al siguiente.

    Esto nos da: \[\text{Residuo}=\dfrac{\sum (y_i - y_i’)^2}{n}=0{,}1088\]

    Regresión lineal - Puntos clave

    • La dispersión de datos, en estadística, es la medida en la cual datos recopilados varían con respecto a un valor central o esperado.
    • En estadística y matemáticas, el ajuste o regresión lineal es un método el cual usarás para averiguar la relación lineal entre dos variables.
    • En este método se calcula la pendiente y la ordenada al origen de una función \(y=ax+b\):
      • \(a=\dfrac{\displaystyle \sum_{i=1}^n x_iy_i-n\bar{x}\bar{y}} {\displaystyle\sum_{i=1}^n{x^2}-\dfrac{1}{n}\left(\sum_{i=1}^n{x}\right)^2}\)
      • \(b=\bar{y}-a\bar{x}\)
    • Un número importante que nos dice cómo de correcta es la recta encontrada es el coeficiente de correlación, también conocido como \(R\).
    Preguntas frecuentes sobre Regresión lineal

    ¿Qué es la regresión lineal?

    En estadística y matemáticas, el ajuste o regresión lineal es un método el que se usa para averiguar la relación entre dos variables.

    ¿Cómo se hace una regresión lineal?

    Se realiza un ajuste de datos, que busca una línea recta que ajuste lo mejor posible a los datos graficados.

    ¿Qué es el método de mínimos cuadrados en contabilidad?

    El método de mínimos cuadrados es un método de regresión, o ajuste lineal, que  busca reducir el valor de la suma del cuadrado, de las distancias entre los datos y una recta que debe de representar estos datos.

    ¿Qué es el coeficiente de determinación?

    Es el cuadrado del coeficiente de correlación.

    ¿Cómo se mide el coeficiente de correlación?

    Es el valor que nos dice cómo de bien se ajusta la recta encontrada usando regresión lineal. También se conoce como r o R y se mide usando un valor entre 1 y -1.

    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    La regresión lineal es un método:

    El método de regresión lineal también se conoce como:

    El método de regresión lineal consiste en:

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 9 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.