La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
Veamos el triángulo de Pascal, cómo construir uno y su relevancia en las expansiones binomiales.El triángulo de Pascal es un triángulo que contiene coeficientes binomiales. La parte superior del triángulo comienza con el único número \(1\) y, a medida que bajamos por el triángulo, cada fila aumenta en un número. El triángulo es también conocido como triángulo de Tartaglia, debido al…
Explore our app and discover over 50 million learning materials for free.
Guarda la explicación ya y léela cuando tengas tiempo.
GuardarLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenVeamos el triángulo de Pascal, cómo construir uno y su relevancia en las expansiones binomiales.
El triángulo de Pascal es un triángulo que contiene coeficientes binomiales. La parte superior del triángulo comienza con el único número \(1\) y, a medida que bajamos por el triángulo, cada fila aumenta en un número.
El triángulo es también conocido como triángulo de Tartaglia, debido al matemático italiano Nicolo Fontana Tartaglia. Asimismo, se ha conocido por muchas generaciones antes de ellos, tiene diversos nombres en persa, chino, alemán e hindú.
Los coeficientes binomiales son relevantes en el contexto de las expansiones binomiales. La fórmula general para una expansión binomial es:
\[(x+y)^n=\sum_{k=0}^{n} \begin{pmatrix} n\\ k \end{pmatrix} x^{n-k}y^k= \sum_{k=0}^{n} \begin{pmatrix} n\\ k \end{pmatrix} x^ky^{n-k}\]
En este caso, los coeficientes binomiales son los términos constantes que se escriben así:
\[\begin{pmatrix} n\\ k \end{pmatrix}\]
Estos coeficientes se pueden encontrar utilizando esta fórmula:
\[\begin{pmatrix} n\\ k \end{pmatrix}=\dfrac{n!}{k!(n-k)!}\]
O utilizando el Triángulo de Pascal:
Fig. 1: Coeficientes del triangulo de pascal.
El diagrama anterior muestra sólo las 8 primeras filas del Triángulo de Pascal, pero se puede continuar hasta el infinito. Cada fila corresponde a un número para \(n\), siendo la primera fila para cuando el binomio está elevado a una potencia \(n=0\).
El triángulo de Pascal tiene un patrón específico que facilita su construcción, en lugar de recordarlo de memoria. Como habrás observado en el diagrama anterior, cada fila empieza y termina con 1 y el número de elementos de cada fila aumenta en 1 cada vez. El número de elementos \(m\) de cada fila viene dado por \(m = n + 1\). Así, la séptima fila \((n = 6)\) tiene 7 elementos \((1, 6, 15, 20, 15, 6, 1)\). Un elemento se puede encontrar sumando los dos elementos que están por encima de él.
Por ejemplo, para la tercera fila \(n = 2\), el \(2\) se obtiene sumando \(1 + 1\) de la fila superior:
Fig 2: Coeficientes del triangulo de pascal.
Para la cuarta fila \(n = 3\), los dos \(3\) provienen de sumar \(1 + 2\) de la fila de arriba:
Fig 3: Coeficientes del triangulo de pascal.
En la cuarta fila \(n = 3\) sumamos \(1 + 3\) para obtener \(4\):
Fig 4: Coeficientes del triangulo de pascal.
Este proceso se puede repetir tantas veces como sea necesario hasta llegar a la fila que necesitamos.
En cada fila, el número que se obtiene sumando todos los elementos de la fila viene dado por \(2^n\) .
Por ejemplo, para la fila \(3 (n = 2)\), la suma de los elementos es \(1 + 2 + 1 = 4\) o \(2^2 = 4\).
Esto es útil para ayudarnos a calcular la suma de los elementos para filas muy grandes, sin tener que construir el triángulo de Pascal:
Por ejemplo, sabemos que para la fila \(20 (n = 19)\), la suma sería \(2^{19}=524288\).
La serie de Fibonacci se puede encontrar en el triángulo de Pascal sumando números en diagonal:
Fig 5: Serie de Fibonacci al sumar los coeficientes del triangulo de Pascal.
Como se ha mencionado anteriormente, el triángulo de Pascal es una forma útil de determinar los coeficientes del binomio en una expansión binomial. Con esto, se puede trabajar desde expresiones básicas al cuadrado hasta largos polinomios a exponentes mayores, como a la quinta.
Veamos cómo realizar la expansión de la siguiente expresión: \((3x+1)^5\)
En primer lugar, tenemos que determinar \(n\), que es el exponente. Así que, en este caso: \(n=5\). Esto nos dice que tendremos que construir el triángulo de Pascal hasta la fila 6, donde \(n=5\).
Utilizando el método descrito anteriormente, obtenemos:
Fig 6: Desarrollo de un binomio a la potencia 5.
Esto significa que usaremos los coeficientes binomiales \(1, 5, 10, 10, 5\) y \(1\).
Introduciendo esto en la fórmula binomial, obtenemos:\[(3x+1)^5=1(3x)^5(1)^0+5(3x)^4(1)^1+10(3x)^3(1)^2+10(3x)^2(1)^3+5(3x)^1(1)^4+1(3x)^0(1)^5\]
\[(3x+1)^5=(3x)^5+5(3x)^4+10(3x)^3+10(3x)^2+5(3x)^1+1\]
Que se puede simplificar a:
\[(3x+1)^5=243x^5+405x^4+270x^3+90x^2+15x+1\]
Podemos definir ciertas propiedades del triángulo de Pascal, ya que hemos hecho algunos ejemplos y visto cómo funciona.
El triángulo de Pascal es simétrico.
Los miembros inferiores son el resultado de la suma de los dos números encima de él.
Todos los números que se encuentran al borde del triángulo son iguales a uno.
Cada fila representa los distintos coeficientes binomiales expandidos.
La segunda diagonal del triángulo se corresponde con los números naturales.
No existe un inventor del triángulo de Pascal propiamente, pues este triángulo ya era conocido por chinos griegos e hindúes; sin embargo, fue Blaise Pascal el que introdujo su notación y desarrolló aplicaciones a las matemáticas con este objeto.
En cada fila hay una cantidad de números igual a la suma del exponente “n” más uno. Por esto, cuando hay un binomio al cuadrado, se obtienen tres términos.
Se deben multiplicar los términos a y b entre sí, por el coeficiente del triángulo; excepto, si este coeficiente está en la diagonal, pues en este caso solo se debe elevar a o b a la potencia n. Los términos se deben elevar a la potencia n hasta n=1, conforme se mueve de la parte externa del triángulo a la parte interna del mismo.
El triángulo de Pascal tiene un patrón específico que facilita su construcción, en lugar de recordarlo de memoria:
de los usuarios no aprueban el cuestionario de Triángulo de Pascal... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
How would you like to learn this content?
Free matematicas cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.
Guarda las explicaciones en tu espacio personalizado y accede a ellas en cualquier momento y lugar.
Regístrate con email Regístrate con AppleAl registrarte aceptas los Términos y condiciones y la Política de privacidad de StudySmarter.
¿Ya tienes una cuenta? Iniciar sesión