Saltar a un capítulo clave
Al girar, la puerta crea una forma cilíndrica. En general, si giras un rectángulo alrededor de una línea fija, producirás un cilindro. Este cilindro se conoce como sólido de revolución porque lo has obtenido mediante una rotación.
Rotando distintos objetos de distintas maneras puedes producir distintos sólidos de revolución. ¡Echemos un vistazo!
Definición de sólido de revolución
Como ya hemos dicho, girando una curva alrededor de una línea fija y rellenándola, obtienes un sólido. Como este sólido se obtiene mediante una revolución, se llama sólido de revolución.
Un sólido de revolución , también llamado volumen de revolución, es una figura sólida que se obtiene al girar una curva alrededor de una recta. La línea utilizada como referencia para la rotación de la curva se conoce como eje de revolución.
Un sólido de revolución debe visualizarse en el espacio tridimensional, ya que requiere tener volumen. Empieza con una función \(f(x)\) sobre un intervalo \([a, b].\)
A continuación, gira la curva alrededor de un eje determinado. Este eje puede ser cualquiera, pero normalmente, en Cálculo se elige el eje \(x-\). ¡Tienes que imaginarte que la curva se sale de la pantalla!
Haciendo esto, obtienes lo que se conoce como superficie de revolución.
Por último, obtienes el sólido rellenando lo que hay dentro de la superficie de revolución. El resultado es una región tridimensional.
Cualquier otra línea recta puede utilizarse como eje de revolución. Por ejemplo, puedes utilizar el eje \(y-\), la recta \( x=2,\) o incluso una función lineal, como \(y=x.\) ¡Hay montones de posibilidades!
Volumen de un Sólido de Revolución
Puedes formar dos tipos de sólidos de revolución girando una curva alrededor de un eje: discos y arandelas. Aquí veremos uno por uno.
El método del disco
El método del disco se utiliza cuando el eje de revolución es un límite del sólido de revolución.
El método del disco divide el sólido de revolución en una serie de cilindros aplanados o discos, de ahí el nombre del método. Para hallar el volumen de todo el sólido, se suma el volumen de cada disco.
Para obtener el volumen exacto, tienes que dividir el sólido en infinitos discos. Para más información sobre este método, consulta nuestro artículo sobre el Método de los Discos.
El método de la arandela
Cuando el eje de revolución no es un límite para el sólido de revolución, se utiliza el método de la arandela.
En esencia, el método de la arandela trocea el sólido de revolución en una serie de arandelas donut aplanadas. Una arandela es esencialmente un disco con un agujero en el centro o un disco dentro de otro disco.
El volumen de cada arandela puede hallarse restando el volumen del disco interior del volumen del disco exterior. Luego, para hallar el volumen de todo el sólido, se suma el volumen de cada arandela.
Para obtener la medida de volumen más exacta, debemos trocear el sólido en infinitas arandelas aplanadas. ¿Necesitas más información sobre este método? Consulta nuestro artículo sobre el Método de las Arandelas.
Área de un sólido de revolución
Una superficie de revolución es un poco diferente. Como su nombre indica, es algo así como una lámina delgada o una piel.
La superficie derevolución es la superficie que limita el sólido de revolución.
Esencialmente, puedes encontrar una superficie de revolución girando una curva alrededor de un eje, igual que un sólido de revolución. Sin embargo, esta figura no está rellena, ¡es un objeto matemático completamente hueco!
Observa que, a pesar de que pueda parecer una arandela, la superficie de revolución es completamente hueca. Esto significa que una superficie de revolución no tiene espesor, ¡por lo que no tiene volumen en absoluto! Un sólido obtenido mediante el método de la arandela sí tiene espesor, por lo que también tiene volumen.
Centroide de un sólido de revolución
Al estudiar los sólidos de revolución es posible que te encuentres con el término centroide. Esto se debe principalmente a que la fórmula para hallar el volumen de un sólido de revolución es muy similar a la fórmula para hallar el centroide de una placa delgada, o lámina.
Consulta nuestro artículo sobre Densidad y centro de masa para obtener más información sobre este tema.
Aunque es posible hallar el centroide de un sólido de revolución, el cálculo es mucho más complejo y queda fuera del alcance de este artículo.
Fórmula del volumen de un sólido de revolución
Para hallar el volumen de un sólido de revolución, necesitas saber primero si se obtiene por el método del disco o por el método de la arandela.
En el caso del método del disco, la sección transversal de un disco es un círculo con un área de \(\pi r^{2}\). Si el eje de rotación es el eje \( x-\)entonces el radio de cada disco viene dado por la función, es decir
\[ r=f(x).\]
Para sumar todos los discos hay que integrar, por lo que la fórmula de un sólido de revolución obtenida por el método de los discos es
\[ \begin{align} V &= \int_a^b \pi \left(f(x)\right)^2,\mathrm{d}x \end{align}\]
Si en cambio tu sólido de revolución se obtiene por el método de la arandela, tienes que eliminar el área de la función interior, por lo que la fórmula es
\[ \inicio{align} V &= \int_a^b \pi \left( f(x) \right)^2,\mathrm{d}x - \int_a^b \pi \left( g(x) \right)^2 \, \mathrm{d}x \ &= \pi \int_a^b \left( \left( f(x) \right) ^2 - \left( g(x) \right)^2 \right) \pi, \mathrm{d}x. \fin]]
Ejemplos de sólidos de revolución
Aquí puedes echar un vistazo a algunos sólidos de revolución que pueden obtenerse por diferentes métodos y con diferentes ejes de rotación. Para obtener información sobre cómo calcular los volúmenes de estos sólidos de revolución, consulta nuestros artículos sobre el Método del Disco y el Método de la Arandela.
Ejemplo del método del disco
Considera la función
\[y=x^2 \text{para} \quad 0\leq x \leq 2.\]
Para la función dada
- Utiliza el método del disco para hallar el sólido de revolución utilizando el eje \(x-\)como eje de rotación.
- Utiliza el método del disco para hallar el sólido de revolución utilizando el eje \(y-\)como eje de rotación.
Solución:
En primer lugar, representa gráficamente la función en el plano \(xy-\)-.
Como el sólido de revolución depende del eje de giro, debes hacer cada caso de uno en uno.
- Utiliza el método del disco para hallar el sólido de revolución utilizando el eje \(x-\)como eje de rotación.
Aquí tienes que girar la función a lo largo del eje \(x-\)-. ¡Imagina que la curva sale de la pantalla!
Ahora se resalta la región resultante. Como se trata de un sólido de revolución, ¡también tienes que rellenarlo!
Parece una trompeta, ¿verdad?
- Utiliza el método del disco para hallar el sólido de revolución utilizando el eje \(y-\)como eje de rotación.
Ahora es el momento de girar la función a lo largo del eje \(y-\)-. Una vez más, ¡piensa en esto como si fuera dentro y fuera de la pantalla circularmente!
A continuación, resalta esta región y rellénala.
Ahora parece una antena parabólica. Mola, ¿verdad?
Ejemplo del método de la arandela
Considera las funciones
\[f(x)=-(x-2)^2+3 \text{para} \cuadrado 1\leq x\leq 3,\]
y
\g(x)=-(x-2)^2+2 cuadrado texto para cuadrado 1 cuadrado x cuadrado 3].
Utiliza el método de la arandela para hallar el sólido de revolución obtenido al girar el área delimitada entre las dos curvas a lo largo del eje \(x-\)-.
Solución:
Como de costumbre, empieza por representar gráficamente ambas funciones.
A continuación, se giran las funciones a lo largo del eje \(x-\)produciendo dos superficies de revolución.
Para terminar el método de la arandela, hay que rellenar el área delimitada entre las dos superficies.
El objeto resultante, a pesar de ser hueco, es un sólido de revolución. ¡Piénsalo como si fuera la piel gruesa de un pomelo inmaduro!
Sólido de revolución - Puntos clave
- Un sólido de revolución es una figura sólida que se obtiene al girar una curva alrededor de una recta denominada eje de revolución.
- Para obtener un sólido de revolución de una función \(f(x)\) sobre un intervalo \([a, b]\), necesitas rotar la curva alrededor de un eje dado (vertical u horizontal) que produce una región tridimensional
- Si el eje de rotación es un límite de la curva, puedes utilizar el Método del Disco para obtener el sólido de revolución.
- Si el eje de rotación no es un límite de la curva, deberás utilizar en su lugar el Método de la Arandela . El sólido de revolución resultante será hueco.
- Una superficie de revolución es la superficie que limita un sólido de revolución. Una superficie de revolución no tiene espesor, por lo que no tiene volumen.
Aprende más rápido con las 12 tarjetas sobre Sólido de Revolución
Regístrate gratis para acceder a todas nuestras tarjetas.
Preguntas frecuentes sobre Sólido de Revolución
Acerca de StudySmarter
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.
Aprende más