La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
La gente experimenta el concepto del momento de fuerza —también conocido como par o torque— casi a diario, y puede que ni siquiera lo sepa. Cada vez que abrimos una puerta, utilizamos el concepto de torsión, al hacer que la puerta gire sobre sus bisagras. Pero, ¿te has preguntado alguna vez por qué…
xplora nuestra app y descubre más de 50 millones de materiales de aprendizaje totalmente gratis.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenLa gente experimenta el concepto del momento de fuerza —también conocido como par o torque— casi a diario, y puede que ni siquiera lo sepa. Cada vez que abrimos una puerta, utilizamos el concepto de torsión, al hacer que la puerta gire sobre sus bisagras.
Pero, ¿te has preguntado alguna vez por qué la manilla de la puerta está situada en el punto más alejado de las bisagras? Su ubicación está directamente relacionada con la torsión y su componente radial. Las manillas situadas en el punto más alejado permiten un radio máximo, lo que a su vez nos facilita abrir las puertas, ya que podemos aplicar menos fuerza. Las manillas situadas en el centro de una puerta nos dificultarían la apertura, porque un radio menor significa que tenemos que aplicar más fuerza para que la puerta se abra.
Este ejemplo es un buen punto de partida para comprender el momento de fuerza, sus componentes y su relación con otras magnitudes de la física. En este artículo definiremos conceptos clave y trabajaremos con algunos casos que te ayudarán para a comprender el par motor.
En el movimiento lineal —que es el movimiento unidimensional a lo largo de una trayectoria recta—los objetos aceleran debido a una fuerza, tal y como expresa la Segunda ley de Newton. Sin embargo, cuando los objetos experimentan un movimiento de rotación —que es un Movimiento Circular alrededor de un eje fijo— experimentan una aceleración angular, debida al par.
La aceleración angular es la variación de la velocidad angular de un objeto con respecto al tiempo.
Podemos calcular la aceleración angular media como:
\[\alpha=\dfrac{\Delta \omega}{\Delta t}\]
Y la aceleración angular instantánea así:
\[\alpha=\dfrac{d\omega}{d t}.\]
La aceleración angular tiene unidades de \(\mathrm{rad/s^2}\).
Ahora bien, al hablar de la aceleración angular, es importante tener en cuenta su relación con la aceleración lineal. La aceleración lineal se relaciona con la angular mediante las ecuaciones \(a=\alpha r\) y \(\alpha=a/r\), donde \(r\) es el radio del Movimiento Circular.
Si introducimos la fórmula de la velocidad angular, \(\omega=v/r\), en la ecuación de la aceleración angular, \(\alpha=\Delta \omega/\Delta t\), podemos obtener la ecuación correspondiente, que relaciona la aceleración angular con la aceleración lineal instantánea, \(\alpha=ar\).
El momento de una fuerza, o torque, es el equivalente rotacional de una fuerza.
El torque, \(\tau\), es una cantidad vectorial que cuantifica el efecto de giro de una fuerza aplicada a un objeto.
El convenio establece que una rotación en sentido contrario a las agujas del reloj indica un par positivo, y una rotación en sentido de las agujas del reloj indica un par negativo. La cantidad de momento aplicada a un objeto depende de la fuerza aplicada, pero también de la distancia perpendicular desde donde se aplica la fuerza con respecto al eje de rotación.
La unidad SI para el torque es el newton por metro \(\mathrm{N\cdot m}\) .
El par puede definirse mediante tres fórmulas:
Definición del producto tensorial.
Definición de producto escalar.
Definición de la Segunda ley de Newton.
La definición de producto cruzado del torque se expresa mediante la ecuación
\[\tau=\vec{r}\times\vec{F},\]
Donde:
El brazo de palanca es la distancia perpendicular desde el eje de rotación a la línea de acción de la fuerza.
Es importante ver que producto tensorial es otro término para producto vectorial, que indica que \(\vec{r}\) y \(\vec{F}\) son cantidades vectoriales. En consecuencia, el producto tensorial entre ellas da como resultado una cantidad vectorial:
\[\vec{r}\times \vec{F}=rF\sin(\theta)\]
La dirección del vector resultante del producto tensorial de dos vectores es perpendicular a ambos vectores y, por tanto, es normal al plano definido por los dos vectores.
Como resultado de la ecuación del producto tensorial, la definición del valor de la magnitud del torque se expresa mediante la ecuación \[\tau=rF\sin(\theta),\]
Donde:
Aquí, las variables \(r\) y \(F\) ya no representan vectores, sino que corresponden a la magnitud de cada vector.
Fig. 1: Diagrama de torque que muestra la fuerza aplicada, la distancia \(r\) al eje de rotación, el ángulo que forman y el brazo de palanca (que se define como \(r\cdot\sin(\theta)\)).
La ecuación del torque se puede escribir de la misma forma que la segunda ley de Newton,\(F=m\cdot a\), y se expresa como:
\[\tau=I\cdot \alpha,\]
Observa que la inercia rotacional desempeña el papel de la masa cuando la segunda ley de Newton se escribe en forma angular.
La inercia rotacional \(I\) es una medida cuantitativa de la resistencia de un objeto a la aceleración angular.
La inercia rotacional varía en función de la forma del objeto y de la distribución de su masa respecto al eje de rotación.
Tal y como hemos presentado al principio del artículo, el torque está relacionado con la aceleración angular. Esta relación se observa cuando se reordena la ecuación \(\tau=I\alpha\), y se resuelve para la aceleración angular.
Así, se obtiene la ecuación:
\[\alpha=\frac{\tau}{I},\]
Esta establece que la aceleración angular es proporcional al torque e inversamente proporcional al momento de inercia.
El torque está relacionado con el Momento angular.
El Momento angular es el producto de la velocidad angular y la inercia rotacional. Tiene unidades SI de \(\mathrm{kg\cdot(m^2/s)}\).
La fórmula matemática correspondiente a esta definición es:
\[L=I\omega ,\]
Únicamente podemos utilizar esta fórmula cuando el momento de inercia es constante. Si el momento de inercia no es constante, tenemos que ver qué está causando el movimiento angular.
La relación entre trabajo y torque se expresa mediante la definición de trabajo.
El trabajo total realizado sobre un cuerpo rígido es la suma de todos los pares integrados sobre un ángulo a través del cual gira el cuerpo.
La fórmula matemática correspondiente a esta definición es:
\[W=\int \vec{\tau}d\vec{\theta},\]
Cuando el trabajo realizado se debe a un torque constante que hace girar un objeto un ángulo determinado, puede simplificarse a:
\[W=\tau\alpha ,\]
Si tomamos la derivada de esta ecuación respecto al tiempo, el resultado da una fórmula que expresa la relación entre torque y potencia:
\[\begin{align} W&=\tau\theta \\ \dfrac{dW}{dt}&=\tau\dfrac{d\theta}{dt} \\ P&=\tau\omega \end{align},\]
Donde:
Observa que \(\dfrac{dW}{dt}\) es la definición de potencia y \(\dfrac{d\theta}{dt}\) es la definición de velocidad angular.
Para que un sistema esté en equilibrio rotacional, la suma de todos los pares que actúan sobre él debe ser igual a cero, \(\sum \tau=0\). La suma de todos los momentos de fuerza que actúan sobre un sistema puede ser cero si los momentos de fuerza actúan en sentidos opuestos y se anulan.
El equilibrio rotacional se define como un estado en el que ni el estado de movimiento de un sistema ni su estado de energía interna cambian con respecto al tiempo.
Para resolver problemas de torque, se pueden utilizar sus ecuaciones y aplicarlas a distintos casos. Como ya hemos definido el torque y discutido su relación con el movimiento de rotación, así como con múltiples variables, vamos a trabajar con algunos ejemplos para familiarizarnos con las ecuaciones.
Ten en cuenta que, antes de resolver un problema, debemos recordar estos sencillos pasos:
Ahora sí, apliquemos nuestros nuevos conocimientos a algunos ejemplos:
Un trabajador de una fábrica está utilizando una llave inglesa para aflojar un tornillo de una máquina. Si aplica \(85\,\mathrm{N}\) de fuerza, ¿cuánto momento de fuerza necesita para aflojar el tornillo?
Fig. 2: Diagrama de variables necesarias para calcular el torque aplicado.
Solución:
Tras leer el problema, tenemos:
Por tanto, aplicando la ecuación de definición de magnitud para el torque, nuestros cálculos serán los siguientes:
\[\begin{align} \tau&=rF\sin(\theta) \\ \tau&=3,2\,\mathrm{m}\cdot 85,0\,\mathrm{N}\cdot \sin(\pi/2) \end{align}\]
La cantidad de torque necesaria para aflojar el tornillo es de \(272\,\mathrm{N\cdot m}\)
Observa que el trabajador está aplicando una fuerza perpendicular a la llave; así, se crea un ángulo de \(90^{\circ}\); o sea, \(\pi/2\) en radianes. Esto maximiza el valor que obtendremos para el torque cuando apliquemos la fuerza.
Probemos con otro ejemplo, para reiterar lo que hemos aprendido:
Un objeto, cuyo momento de inercia es \(56\,\mathrm{kg/m^2}\), gira con una aceleración angular de \(4,40\,\mathrm{rad/s^2}\). Calcula la cantidad de torque necesaria para que este objeto gire alrededor de un eje.
Fig. 3: Diagrama de un objeto que gira con aceleración angular.
Solución:
Después de leer el problema, tenemos:
Por tanto, aplicando la ecuación del torque expresada en la forma de la segunda ley de Newton, nuestros cálculos serán los siguientes:
\[\begin{align} \tau&=I\cdot \alpha \\ \tau&=\left(56\,\mathrm{kg/m^2}\right)\cdot (4,40\,\mathrm{rad/s^2}) \\ \tau&=246,4\,\mathrm{N\cdot m}\end{align}\]
La cantidad de torque necesaria para hacer girar el objeto alrededor de un eje es \(246\,\mathrm{N\cdot m}\)
El torque es una cantidad vectorial que cuantifica el efecto de giro de una fuerza aplicada a un objeto.
El torque se calcula con la siguiente fórmula:
τ=r x F= r·F·sin(θ),
Donde: F es la fuerza aplicada, r es la distancia al eje de rotación y θ es el ángulo que forman estos dos vectores.
La cantidad de torque aplicada a un objeto respecto a un eje depende de cuánta fuerza se aplique y de la distancia perpendicular al eje de rotación.
El torque será positivo o negativo en función de la dirección y sentido de la fuerza aplicada y la distancia al eje de rotación, dado que son dos vectores.
El momento de fuerza con respecto a un eje se calcula con la siguiente fórmula:
τ=r x F = r·F·sin(θ),
Donde: F es la fuerza aplicada, r es la distancia a este eje de rotación y θ es el ángulo que forman estos dos vectores.
Tarjetas en Torque15
Empieza a aprender¿A qué tipo de torque corresponde una rotación en el sentido de las agujas del reloj?
Torque negativo.
¿A qué tipo de torque corresponde una rotación en sentido contrario a las agujas del reloj?
Torque positivo.
El _____ realizado sobre un cuerpo rígido es la suma de todos los torques integrados sobre un ángulo a través del cual gira el cuerpo.
Trabajo.
___ se define como el producto de los torques, ejercidos sobre un objeto o sistema rígido, a lo largo de un intervalo de tiempo.
Impulso angular.
Un objeto, cuyo momento de inercia es \(10\,\mathrm{kg/m^2}\) gira con una aceleración angular de \(5\,\mathrm{rad/s^2}\). Calcula la cantidad de torque necesario para que este objeto gire alrededor de un eje.
\(\tau=50\,\mathrm{N m}\).
Un hombre utiliza una llave inglesa de \(2\,\mathrm{m}\) para aflojar un tornillo de una máquina. Si aplica \(20\,\mathrm{N}\) de fuerza en un ángulo de \(30^{\circ}\), ¿cuánto torque se necesita para aflojar el tornillo?
\(\tau=20\,\mathrm{N m}\).
¿Ya tienes una cuenta? Iniciar sesión
La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.
Guarda las explicaciones en tu espacio personalizado y accede a ellas en cualquier momento y lugar.
Regístrate con email Regístrate con AppleAl registrarte aceptas los Términos y condiciones y la Política de privacidad de StudySmarter.
¿Ya tienes una cuenta? Iniciar sesión