• :00Días
  • :00Horas
  • :00Min
  • 00Seg
Pronto llegará una nueva era para el aprendizajeRegístrate gratis
Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

Energía cinética

¿Qué tienen en común un coche que circula por la autopista, un libro que cae al suelo y un cohete que sale disparado hacia el espacio? Todos ellos son objetos en movimiento y, por tanto, todos tienen energía cinética. La razón es que cualquier objeto moviéndose a cierta velocidad tiene energía cinética, lo que significa que el objeto puede realizar…

Content verified by subject matter experts
Free StudySmarter App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Energía cinética

Energía cinética
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

¿Qué tienen en común un coche que circula por la autopista, un libro que cae al suelo y un cohete que sale disparado hacia el espacio? Todos ellos son objetos en movimiento y, por tanto, todos tienen energía cinética. La razón es que cualquier objeto moviéndose a cierta velocidad tiene energía cinética, lo que significa que el objeto puede realizar un trabajo sobre otro objeto.

Por ejemplo, un conductor que viaja en un coche por la autopista se mueve con el coche, porque el coche en movimiento ejerce una fuerza sobre el conductor; esto hace que el conductor también se mueva.

En este artículo:

  • Primero, definiremos la energía cinética y discutiremos la relación entre energía cinética y trabajo.
  • A continuación, veremos la fórmula que describe la energía cinética, y analizaremos las diferencias entre energía cinética y energía potencial.
  • También, aprenderemos sobre los tipos de energía cinética y repasaremos con algunos ejemplos.

¿Qué es la energía cinética?

La energía cinética es la capacidad de un objeto en movimiento para realizar trabajo.

La energía cinética es una cantidad escalar, por lo que es más fácil trabajar con ella que con un vector. Existen distintos tipos de energía cinética, como la energía cinética térmica y eléctrica; pero, en este artículo nos centraremos en la energía cinética mecánica. La unidad SI de la energía cinética es el julio, que se abrevia con \(\mathrm{J}\).

  • Un julio, \(\mathrm{J}\) es un newton por metro \(\mathrm{N\cdot m}\).

La energía cinética traslacional de un objeto depende de la masa y la velocidad del objeto. Viene dada por la siguiente fórmula:

\[E_c=\dfrac{1}{2}m\vec{v}^2,\]

Donde:

  • \(m\) es la masa del objeto en kilogramos \(\mathrm{kg}\)
  • \(v\) es su velocidad, en metros por segundo \(\mathrm{m/s}\).

A partir de la ecuación, vemos que la energía cinética de un objeto únicamente puede ser una cantidad positiva, o cero (si el objeto no se mueve). No depende de la dirección del movimiento.

Para los problemas de física que son difíciles de resolver utilizando vectores de fuerza y aceleración, es mucho más fácil utilizar la energía, en su lugar.

Trabajo

Para comprender mejor la energía cinética, repasemos rápidamente qué es el trabajo:

El trabajo es el producto escalar del vector fuerza que actúa sobre el objeto y el vector desplazamiento.

Podemos hallar el trabajo realizado sobre un objeto tomando el producto escalar de la fuerza y el desplazamiento:

\[W=\vec{F}\cdot \vec{d}\]

Si sólo tomamos la componente del vector fuerza que es paralela al vector desplazamiento, podemos escribir nuestra fórmula así:

\[W=F\cdot d\cdot\cos(\theta).\]

En la ecuación anterior:

  • \(\vec{F}\) es la magnitud del vector fuerza
  • \(\vec{d}\) es la magnitud del vector desplazamiento
  • \(\theta\) es el ángulo entre los vectores.

Observa que el trabajo, al igual que la energía cinética, es una cantidad escalar.

Ahora que hemos repasado qué es el trabajo, podemos discutir cómo se relaciona la energía cinética con el trabajo. Como ya hemos dicho, la energía cinética es la capacidad de un objeto en movimiento para realizar trabajo.


Podemos pensar en la ecuación de la energía cinética
como el trabajo realizado para llevar un objeto desde el reposo hasta su velocidad actual. La magnitud del cambio en la energía cinética de un objeto es el trabajo total realizado sobre el objeto:

\[\begin{align} W&=\Delta E_c \\ &=E_{c_2}-E_{c_1} \end{align}\]

Las variables \(E_{c_1}\) y \(E_{c_2}\) en esta ecuación representan la energía cinética inicial y la energía cinética final, respectivamente.

Sólo la componente de la fuerza paralela al vector desplazamiento modifica la energía cinética. Si el objeto tiene una componente de fuerza perpendicular al vector desplazamiento, esa componente de fuerza puede cambiar la dirección del movimiento, sin realizar trabajo sobre el objeto.

Por ejemplo, un objeto en movimiento circular uniforme tiene energía cinética constante, y la fuerza centrípeta que es perpendicular a la dirección del movimiento, mantiene al objeto en movimiento circular uniforme.

Resolvamos un caso, para comprender mejor lo visto:

Considera un bloque de \(12\,\mathrm{kg}\) que es empujado con fuerza constante una distancia de \(10\,\mathrm{m}\) con un ángulo de \(\theta=35^{\circ}\) respecto a la horizontal. Teniendo en cuenta que la magnitud de la fuerza de empuje es \(F_p=50\,\mathrm{N}\) y que la magnitud de la fuerza de rozamiento es \(F_f=25\,\mathrm{N}\), ¿cuál es el cambio de energía cinética del bloque?

Energía cinética Un bloque en movimiento que muestra el cambio de energía cinética StudySmarterFig. 1: Un bloque siendo empujado a través de una superficie.

El cambio en la energía cinética es igual al trabajo neto realizado sobre el objeto, por lo que podemos utilizar las fuerzas para hallar el trabajo neto:

La fuerza normal y la fuerza de la gravedad son perpendiculares al vector desplazamiento, por lo que el trabajo realizado por estas fuerzas es cero.

El trabajo realizado por la fuerza de rozamiento está en la dirección opuesta a la del vector desplazamiento y, por tanto, es negativo:

\[\begin{align} W_f&=F_f\cdot d\cdot\cos(\theta) \\ &=-(25\,\mathrm{N})(10\,\mathrm{m})\cos(180^{\circ}) \\ &=-250\,\mathrm{J} \end{align}\]

La componente del vector fuerza de empuje, que es perpendicular al vector desplazamiento, no realiza ningún trabajo sobre el bloque; pero, la componente que es paralela al vector desplazamiento realiza un trabajo positivo sobre el bloque:

\[\begin{align} W_p&=F_p\cdot d\cdot \cos(\theta) \\ &=(50\,\mathrm{N})(10\,\mathrm{m})\cos(35^{\circ}) \\ &=410\,\mathrm{J} \end{align}\]

Por tanto, el cambio en la energía cinética es:

\[\begin{align} \Delta E_c&=W_{neto} \\ &=W_g+W_n+W_f+W_p \\ &=0\,\mathrm{J}+0\,\mathrm{J}-250\,\mathrm{J}+410\,\mathrm{J}=160\,\mathrm{J} \end{align}\]

Fórmula de la energía cinética

¿Cómo hemos llegado a la fórmula que relaciona la energía cinética con el trabajo? Considera un objeto, que se mueve horizontalmente, al que se aplica una fuerza constante. En este caso, podemos utilizar la fórmula de la aceleración constante y resolver la aceleración:

\[\begin{align} \vec{v}^2_2&=\vec{v}^2_1+2\vec{a}_x\vec{d} \\ \vec{a}_x&=\dfrac{\vec{v}^2_2-\vec{v}^2_1}{2\vec{d}} \end{align}\]

Donde:

  • \(\vec{v}_1\) y \(\vec{v}_2\) son las velocidades inicial y final, respectivamente
  • \vec{d} es la distancia recorrida
  • \(\vec{a}_x\) es la aceleración en la dirección del desplazamiento.

Ahora, podemos multiplicar ambos lados de la ecuación por la masa del objeto:

\[m\vec{a}_x=\dfrac{m(\vec{v}^2_2-\vec{v}^2_1)}{2\vec{d}}\]

Reconocemos el lado izquierdo de esta ecuación como la fuerza neta en la dirección del desplazamiento. Así, igualando el lado izquierdo a la fuerza neta y multiplicando después por la distancia, obtenemos:

\[\vec{F}\cdot\vec{d}=\dfrac{1}{2}m\vec{v}^2_2-\dfrac{1}{2}m\vec{v}^2_1\]

Ahora, podemos identificar el trabajo realizado sobre el objeto y las energías cinéticas final e inicial:

\[W=E_{c_2}-E_{c_1}\]

Esta ecuación nos muestra cómo el trabajo realizado sobre un objeto es igual al cambio de energía cinética que experimenta.

Hasta ahora sólo hemos hablado de la relación entre la energía cinética y el trabajo cuando se aplica una fuerza constante al objeto. En un artículo posterior hablaremos de su relación cuando hay una fuerza variable.

Tipos de energía cinética

En este artículo hemos hablado de la energía cinética traslacional. Otros dos tipos de energía cinética son la energía cinética rotacional y la energía cinética de vibración. Por ahora, no necesitamos preocuparnos por la energía cinética de vibración, pero hablaremos un poco de la energía cinética rotacional.

La energía cinética rotacional de un cuerpo rígido en rotación viene dada por:

\[E_c=\dfrac{1}{2}I\vec{\omega}^2.\]

En esta ecuación:

El cambio en la energía cinética rotacional es el trabajo realizado sobre el objeto, y se halla multiplicando el desplazamiento angular \(\Delta \theta y el torque \(\tau\) :

\[W=\Delta E_c=\tau\Delta \theta .\]

Puedes encontrar más información acerca del movimiento de rotación y sus energías asociadas aquí, ¡en StudySmarter!

Energía cinética y energía potencial

La energía mecánica de un sistema puede hallarse sumando las energías cinética y potencial.

  • Hemos visto que la energía cinética únicamente depende de la masa del objeto y de su velocidad.
  • La energía potencial es la que está relacionada con la posición del sistema y su configuración interna.

Si sobre un sistema únicamente actúan fuerzas conservativas, la energía mecánica total se conserva.

Un ejemplo rápido de esto es una pelota en caída libre desde cierta altura, \(h\):

  • Ignoraremos la resistencia del aire y tomaremos la gravedad \(g\) como la única fuerza que actúa sobre la bola.
  • A la altura \(h\), la bola tiene energía potencial gravitatoria.
  • A medida que la bola cae, la energía potencial gravitatoria disminuye, hasta que la bola toca el suelo (momento en el que es cero).
  • La energía cinética de la bola aumenta a medida que cae, porque su velocidad aumenta.
  • La energía mecánica del sistema sigue siendo la misma en cualquier punto.

Energía cinética Pelota en caída libre con energía cinética creciente y energía potencial decreciente StudySmarterFig. 2: Asumiendo una masa de \(m=1\,\mathrm{kg}\) y un valor de \(g=10\,\mathrm{m/s^2}\), podemos ver como la energía cinética crece, mientras que la energía potencial gravitatoria hace lo contrario. Por otro lado, la energía mecánica se mantiene constante.

Ejemplos de energía cinética

Veamos un par de ejemplos acerca de la energía cinética.

Considera un coche de \(1000\,\mathrm{kg}\) que viaja con una velocidad de \(15\,\mathrm{m/s}\) ¿Cuánto trabajo se necesita para que el coche acelere a \(40\,\mathrm{m/s}\)?

Solución:

Recuerda que el trabajo equivale al cambio de energía cinética.

Podemos hallar las energías cinéticas inicial y final para calcular el trabajo necesario. La energía cinética inicial y la energía cinética final vienen dadas por:

\[\begin{align} E_{c_1}&=\dfrac{1}{2}m\vec{v}^2_1 \\ &=\dfrac{1}{2}(1000\,\mathrm{kg})(15\,\mathrm{m/s})^2 \\ &=1,13\cdot 10^{5}\,\mathrm{J} \\ \\ E_{c_2}&=\dfrac{1}{2}m\vec{v}^2_2 \\ &=\dfrac{1}{2}(1000\,\mathrm{kg})(40\,\mathrm{m/s})^2 \\ &=8\cdot 10^{5}\,\mathrm{J} \end{align}\]

A continuación, hallamos el trabajo necesario. a través la diferencia entre las energías cinéticas inicial y final:

\[\begin{align} W&=E_{c_2}-E_{c_1} \\ &=8\cdot 10^5\,\mathrm{J}-1,13\cdot 10^5\,\mathrm{J} \\ &=6,87\cdot 10^{5} \,\mathrm{J} \end{align}\]

Dos trineos idénticos recorren la misma distancia sobre hielo sin rozamiento. Un trineo se desplaza con una velocidad dos veces mayor que la del otro. ¿Cuánto mayor es la energía cinética del trineo que viaja más rápido?

Energía cinética Comparación de las energías cinéticas de dos trineos con velocidades diferentes StudySmarterFig. 3: Trineos idénticos viajando uno con el doble de velocidad que el otro.

La energía cinética del trineo más lento viene dada por \(E_{c_1}=\dfrac{1}{2}mv^2\) y la del trineo más rápido es \(E_{c_2}=\dfrac{1}{2}m(2v)^2\).

Haciendo el cociente de estas, tenemos:

\[\dfrac{E_{c_2}}{E_{c_1}}=\dfrac{2mv}{\dfrac{1}{2}mv}=4\]

Por tanto, \(E_{c_2}=4E_{c_1}\)\), por lo que la energía cinética del trineo más rápido es cuatro veces mayor que la del trineo más lento.

Energía cinética - Puntos clave

  • La energía cinética es la capacidad de un objeto en movimiento para realizar trabajo.

    La fórmula de la energía cinética de un objeto viene dada por \(E_{c}=\dfrac{1}{2}mv^2\).

  • El trabajo realizado sobre un objeto es el cambio en la energía cinética.

  • Traslacional, rotacional y vibracional son tipos de energía cinética.

  • La energía potencial es la energía relacionada con la posición y la configuración interna del sistema.

  • Si sumamos la energía cinética y la energía potencial, obtenemos la energía mecánica total de un sistema.

Preguntas frecuentes sobre Energía cinética

La energía cinética es la capacidad de un objeto en movimiento para realizar trabajo. 


Su fórmula es la siguiente:

Ec=(1/2)mv2.

Los tres tipos de energía cinética son: traslacional, rotacional y de vibración.

La energía cinética depende directamente de la masa de un objeto y su velocidad.

Para que un objeto tenga energía cinética es necesario que este se desplace; es decir, que tenga velocidad. 

El trabajo es la variación de energía cinética.

Cuestionario final de Energía cinética

Energía cinética Quiz - Teste dein Wissen

Pregunta

La energía cinética de rotación no depende de la velocidad angular, sino del momento de inercia. ¿Verdadero o falso? 

Mostrar respuesta

Answer

Falso, depende de ambas. 

Show question

Pregunta

¿Cuáles son unidades de la velocidad angular?

Mostrar respuesta

Answer

\(\mathrm{rad/s}\).

Show question

Pregunta

Una bola gira en el aire con una velocidad lineal de \(10\,\,\mathrm{m/s}\) y una masa de \(1\,\,\mathrm{kg}\). El objeto tiene un momento de inercia de \(0,5\,\,\mathrm{kg\cdot m}\). La velocidad angular del objeto es de \(5\,\,\mathrm{rad/s}\). Encuentra la energía cinética total de la bola.

Mostrar respuesta

Answer

\(56,25\,\,\mathrm{J}\).

Show question

Pregunta

¿Cuál es la relación entre la velocidad angular y el periodo?

Mostrar respuesta

Answer

Inversamente proporcional.

Show question

Pregunta

¿Cómo convertimos la velocidad angular en velocidad lineal?

Mostrar respuesta

Answer

Dividiendo la velocidad angular por el radio del eje de rotación.

Show question

Pregunta

¿Cuál es la relación entre la velocidad de traslación y la velocidad angular?

Mostrar respuesta

Answer

Son directamente proporcionales.

Show question

Pregunta

¿Cuáles son las diferencias entre la energía cinética de rotación y de traslación?

Mostrar respuesta

Answer

La energía cinética rotacional es proporcional al momento de inercia, y la energía cinética traslacional es proporcional a la masa.

Show question

Pregunta

Define el concepto de momento de inercia en términos de la distribución de la masa desde el eje de rotación.

Mostrar respuesta

Answer

Es el producto de la masa individual de un objeto por la distancia perpendicular al eje de rotación.

Show question

Pregunta

Explica cómo afecta el momento de inercia de los cuerpos rígidos a su energía cinética de rotación en términos de modificar su valor.

Mostrar respuesta

Answer

Cuando el momento de inercia aumenta, la energía cinética también aumenta, y viceversa.

Show question

Pregunta

¿Cuál es la relación entre la energía cinética de traslación y la de rotación?

Mostrar respuesta

Answer

Es la división de la energía cinética traslacional entre la energía cinética rotacional.

Show question

Pregunta

¿Cuál de estos no es un ejemplo de movimiento rotacional?

Mostrar respuesta

Answer

La distancia que recorre una bola de bolos que gira.

Show question

Pregunta

¿Qué unidades tiene la energía cinética de rotación?

Mostrar respuesta

Answer

Julios (\(\mathrm{J}\)).

Show question

Pregunta

¿Cómo es la fórmula para calcular la energía cinética de rotación?

Mostrar respuesta

Answer

\(E_r=\dfrac{1}{2}m\omega^2r^2\).

Show question

Pregunta

¿Cómo podemos calcular el momento de inercia de un cuerpo? 

Mostrar respuesta

Answer

\(I=mr^2\).

Show question

Pregunta

¿Qué es la energía cinética de rotación?

Mostrar respuesta

Answer

La energía cinética de rotación es la energía de un cuerpo que gira.

Show question

Pregunta

Rellena el espacio en blanco: la energía mecánica total de un sistema puede hallarse mediante la suma de las _________ . 

Mostrar respuesta

Answer

energías cinética y potencial.

Show question

Pregunta

¿Cuál es la ecuación que describe la relación entre el trabajo y la energía cinética?

Mostrar respuesta

Answer

\(W=\Delta E_c\).

Show question

Pregunta

¿Cuál es la energía cinética de un coche de \(1000\,\mathrm{kg}\) que se mueve con una velocidad de \(30\,\mathrm{m/s}\)?

Mostrar respuesta

Answer

\(E_c=4,5\cdot 10^{5}\,\mathrm{J}\).

Show question

Pregunta

¿Qué le sucede a la energía potencial de una pelota cuando se deja caer desde una cierta altura?

Mostrar respuesta

Answer

Aumenta.

Show question

Pregunta

¿Cómo se comparan las energías cinéticas de dos bloques que se mueven a la misma velocidad si uno de ellos tiene una masa dos veces superior a la del otro?

Mostrar respuesta

Answer

El bloque con más masa tendrá el doble de energía cinética que el otro bloque.

Show question

Pregunta

Una fuerza tira en la dirección \(x\) positiva de un bloque que se mueve en la dirección \(x\) negativa. El trabajo realizado por la fuerza será ___________.

Mostrar respuesta

Answer

una cantidad negativa.

Show question

Pregunta

El trabajo realizado por una fuerza vertical sobre un bloque que se mueve horizontalmente es _____.

Mostrar respuesta

Answer

cero.

Show question

Pregunta

¿Cuál es la ecuación de la energía cinética de rotación?

Mostrar respuesta

Answer

\(E_c=\dfrac{1}{2}I\vec{\omega}^2\).

Show question

Pregunta

¿Cuáles son los tres tipos de energía cinética?

Mostrar respuesta

Answer

Traslacional, rotacional y de vibración.

Show question

Pregunta

¿Cuál es la diferencia entre energía potencial y energía cinética?

Mostrar respuesta

Answer

La energía cinética depende de la masa y la velocidad de un objeto, y la energía potencial depende de la posición y la configuración interna del objeto.

Show question

Pregunta

Rellena el espacio en blanco: el trabajo es el producto escalar de ______ y _______.

Mostrar respuesta

Answer

El vector fuerza y el vector desplazamiento.

Show question

Pregunta

¿Cuál es la ecuación que describe la energía cinética?

Mostrar respuesta

Answer

\(E_c=\dfrac{1}{2}m\vec{v}^2\).

Show question

Pregunta

¿Cuál es la relación entre energía cinética y trabajo?

Mostrar respuesta

Answer

El trabajo neto realizado sobre el sistema equivale al cambio de energía cinética.

Show question

Pregunta

¿Cómo se calcula el trabajo realizado sobre un objeto que se mueve horizontalmente?

Mostrar respuesta

Answer

Calculamos el producto escalar del vector fuerza que actúa sobre el objeto y el vector desplazamiento.

Show question

Pregunta

¿Qué es la energía cinética?

Mostrar respuesta

Answer

La energía cinética es la capacidad de un objeto en movimiento para realizar un trabajo.

Show question

60%

de los usuarios no aprueban el cuestionario de Energía cinética... ¿Lo conseguirás tú?

Empezar cuestionario

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!

94% of StudySmarter users achieve better grades.

Sign up for free!

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free fisica cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Empieza a aprender con StudySmarter, la única app de estudio que necesitas.

Regístrate gratis
Illustration