Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

Momento de inercia

Momento de inercia

Supongamos que tenemos una esfera hueca, una esfera sólida, un anillo y un disco. Tienen la misma masa y se hacen rodar por un plano inclinado. ¿Cuál crees que llegaría más rápido al suelo?

Momento de inercia Animación de una esfera hueca, una esfera sólida, un anillo y un disco rodando por un plano inclinado StudySmarterFig. 1: Comparación de diferentes objetos rodando por un plano inclinado. (Mira el gif aquí)

Si les hiciésemos caer: la esfera sólida sería la primera, seguida del disco, luego la esfera hueca y, por último, ¡el anillo! Pero, ¿por qué, si tienen la misma masa? El concepto de inercia rotacional lo explica.

En este artículo, profundizaremos en una parte específica del movimiento de rotación, llamada momento de inercia. Veremos cómo representar matemáticamente el momento de inercia y resolveremos algunos ejemplos en los que este concepto interviene.

Definición del momento de inercia

El momento de inercia es una cantidad escalar que mide la resistencia a la rotación de un cuerpo en rotación.

Cuanto mayor es el momento de inercia, más resistente es un cuerpo a la rotación angular. Un cuerpo suele estar formado por varias partículas pequeñas, que forman la masa completa. El momento de inercia de la masa depende de la distribución de cada masa individual respecto a la distancia perpendicular al eje de rotación. Sin embargo, en física, solemos suponer que la masa de un objeto se concentra en un único punto, llamado centro de masa. Esto lo hacemos para facilitar los cálculos, dado que es una aproximación útil.

Ecuación del momento de inercia

Matemáticamente, el momento de inercia de un sistema o cuerpo puede expresarse, en términos de sus masas individuales, como la suma del producto de cada masa individual por la distancia perpendicular al eje de rotación elevada al cuadrado. Esto se puede ver en la siguiente ecuación:

\[I=\sum^{N}_{i} m_i\cdot r_i^2,\]

Donde,

  • \(I\) es el momento de inercia, medido en kilogramos por metro cuadrado (\(\mathrm{kg\cdot m^2}\)).
  • \(m_i\) son las masas individuales, medidas en kilogramos (\(\mathrm{kg}\)).
  • \(r_i\) son la distancias perpendiculares al eje de rotación, medida en metros (\(m\)).

También, podemos utilizar la siguiente ecuación para un objeto cuya masa se supone concentrada en un único punto:

\[I=m\cdot r^2\]

La siguiente imagen muestra la distancia del eje de rotación \(r\).

Momento de inercia Eje de rotación StudySmarterFig. 2: Diagrama que muestra la distancia del eje de rotación \(r\).

Torque y momento de inercia

La ley de Newton establece que la aceleración lineal de un objeto es linealmente proporcional a la fuerza neta que actúa sobre él cuando la masa es constante. Podemos expresar esto con la siguiente ecuación:

\[F_t=m\cdot a_t\]

Donde:

  • \(F_t\) es la fuerza neta.
  • \(m\) es la masa del objeto.
  • \(a_t\) es la aceleración de traslación.

Del mismo modo, empleamos el par de torsión para el movimiento de rotación.

El par de torsión o torque es igual al producto de la fuerza de rotación por la distancia perpendicular al eje de rotación.

Sin embargo, la aceleración de traslación para el movimiento de rotación es igual al producto de la aceleración angular \(\alpha\) y el radio \(r\). Esto, por tanto, nos da que:

\[\tau=mr^2\alpha\]

El momento de inercia es el recíproco de la masa, en la segunda ley de Newton para la aceleración lineal, pero aplicado a la aceleración angular.

La segunda ley de Newton describe el par que actúa sobre un cuerpo, que es linealmente proporcional al momento de inercia de la masa de un cuerpo y a su aceleración angular.

Por tanto, podemos expresar matemáticamente el par \(\tau\) como el producto del momento de inercia \(I\) y la aceleración angular \(\alpha\):

\[\tau=I\cdot \alpha\]

Momentos de inercia para diferentes figuras

El momento de inercia es diferente y específico para la forma y el eje de cada objeto. Debido a la variación de las formas geométricas, se da un momento de inercia para varias formas de uso común. Puedes verlas en la imagen siguiente.

Momento de inercia Momento de inercia de diferentes formas StudySmarterFig. 3: Momentos de inercia para distintos cuerpos.

Ejemplos de cálculo del momento de inercia

Veamos algunos ejemplos del momento de inercia:

Un disco delgado de \(0,3\,\mathrm{m}\) de diámetro, con un momento de inercia total de \(0,45\,\,\mathrm{kg\cdot m^2}\), gira alrededor de su centro de masa. En la parte exterior del disco hay tres rocas con masas de \(0,2\,\mathrm{kg}\). Encuentra el momento de inercia total del sistema.

Solución:

El radio del disco es de \(0,15\,\mathrm{m}\). Podemos calcular el momento de inercia de cada roca como:

\[I_{roca}=mr^2=0,2\,\mathrm{kg}\cdot 0,15\,\mathrm{m^2}=4,5\cdot 10^{-3}\,\mathrm{kg\cdot m^2}\]

Por tanto, el momento de inercia total será

\[I_{rocas}+I_{disco}=(3\cdot I_{roca})+I_{disco}=(3\cdot 4,5\cdot 10^{-3}\,\mathrm{kg\cdot m^2})+0,45\,\mathrm{kg\cdot m^2}=0,4635\,\mathrm{kg\cdot m^2}\]

Un atleta está sentado en una silla giratoria, sujetando una pesa de entrenamiento de \(10\,\mathrm{kg}\) en cada mano. ¿Cuándo será más probable que el atleta rote: cuando extienda los brazos lejos de su cuerpo o cuando retraiga los brazos cerca de su cuerpo?

Solución:

Cuando el atleta extiende sus brazos, el momento de inercia aumenta, al aumentar la distancia entre el peso y su eje de rotación. Cuando el atleta retrae sus brazos, la distancia entre las pesas y el eje de rotación disminuye, y también lo hace el momento de inercia.

Por lo tanto, es más probable que el atleta rote cuando retrae sus brazos, ya que el momento de inercia será menor y el cuerpo tendrá menos resistencia a rotar.

Un disco muy fino, de \(5\,\mathrm{cm}\) de diámetro, gira en torno a su centro de masa. Otro disco más grueso, de \(2\,\mathrm{cm}\) de diámetro, gira en torno a su centro de masa. ¿Cuál de los dos discos tiene un mayor momento de inercia?

Solución:

El disco de mayor diámetro tendrá un mayor momento de inercia: Como indica la fórmula, el momento de inercia es proporcional al cuadrado de la distancia al eje de rotación, por lo que cuanto mayor sea el radio, mayor será el momento de inercia.

Momento de inercia - Puntos clave

  • El momento de inercia es una medida de la resistencia a la rotación de un objeto.
  • El momento de inercia depende de la masa y de la distribución de esta en torno a su eje de rotación.
  • El momento de inercia es el recíproco de la masa en la segunda ley de Newton aplicada a la rotación.
  • El momento de inercia es diferente y específico para la forma y el eje de cada objeto. Es decir, existen momentos de inercia para diferentes formas.

Preguntas frecuentes sobre Momento de inercia

El momento de inercia es una cantidad escalar que mide la resistencia a la rotación de un cuerpo en rotación. 


Algunos ejemplos pueden ser una pelota o un anillo, cuando ambos giran en un plano inclinado. 

El momento de inercia, cuya masa se supone concentrada en un punto. se puede calcular como: I=m·r2.

El momento de inercia de una figura se puede calcular cómo:

,

Donde:

  • I es el momento de inercia, medido en kilogramos por metro cuadrado (kg⋅m2).
  • mi son las masas de las partículas que forman una figura, medidas en kilogramos (kg).
  • ri son la distancias perpendiculares al eje de rotación medida en metros (m).

No hay una figura con un mayor momento de inercia; depende de su forma y estructura. 

El par de torsión, o torque, es igual al producto de la fuerza de rotación por la distancia perpendicular al eje de rotación.

Cuestionario final de Momento de inercia

Pregunta

Un objeto tiene un momento de inercia de \(60\,\mathrm{kg\cdot m^2}\). ¿Cómo se verá afectado el momento de inercia si se duplica la distancia perpendicular al eje de rotación o su masa distribuida?

Mostrar respuesta

Answer

El momento de inercia total se duplicará .

Show question

Pregunta

Dos personas están sentadas en una barca pequeña ¿Cómo deben sentarse para resistir la rotación de la barca?

Mostrar respuesta

Answer

Deben sentarse en el centro de masa de la barca.

Show question

Pregunta

Una pesa de entrenamiento tiene dos discos unidos con una varilla. ¿Cuándo será más fácil hacer girar la pesa de entrenamiento?

Mostrar respuesta

Answer

Cuando uno de los discos de pesas se coloca en el centro y el otro en el extremo.

Show question

Pregunta

Cuando alguien está girando y de repente extiende los brazos alejándolos del cuerpo, ¿cómo se ve afectado el momento de inercia?

Mostrar respuesta

Answer

El momento de inercia aumenta al aumentar la distancia entre la distribución de la masa y el eje de rotación.

Show question

Pregunta

Un patinador sobre hielo intenta realizar ejercicios aeróbicos mientras patina sobre hielo. ¿Cómo puede asegurarse de que permanece estable cuando realiza sus rotaciones?

Mostrar respuesta

Answer

Puede retraer las manos y las piernas lo más cerca posible del centro de masa.

Show question

Pregunta

Un momento de inercia elevado significa que un cuerpo tiene menos probabilidades de girar. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

¿Un momento de inercia mayor significa que un cuerpo tiene más probabilidades de girar?

Mostrar respuesta

Answer

No, un momento de inercia mayor no significa que un cuerpo tenga más probabilidades de girar.

Show question

Pregunta

¿Cuál es la relación entre la segunda ley de Newton y la ley de rotación de Newton?

Mostrar respuesta

Answer

\(F=ma\) y \(\tau=Ia\). Tienen la misma forma, por lo que el momento de inercia es el recíproco de la masa en la segunda ley de Newton para la aceleración lineal.

Show question

Pregunta

¿Cómo se relaciona el momento de inercia con la segunda ley de Newton?

Mostrar respuesta

Answer

El momento de inercia es el recíproco de la masa en la segunda ley de Newton.

Show question

Pregunta

¿Cuál es la unidad del momento de inercia?

Mostrar respuesta

Answer

\(\mathrm{kg\cdot m^2}.\)

Show question

Pregunta

¿Qué representa \(r\) en la ecuación del momento de inercia?

Mostrar respuesta

Answer

La distancia de la masa distribuida de un objeto a su eje de rotación.

Show question

Pregunta

¿Cuál es la ecuación que utilizamos para calcular el momento de inercia?

Mostrar respuesta

Answer

\[I=m\cdot r^2.\]

Show question

Pregunta

¿Cuál es la expresión del momento de inercia para un cilíndrico sólido respecto un eje simétrico?

Mostrar respuesta

Answer

\[I=\dfrac{M\cdot r^2}{2}.\]

Show question

Pregunta

¿Qué es el momento de inercia?

Mostrar respuesta

Answer

El momento de inercia es la medida de la dificultad de un objeto para girar alrededor de su eje de rotación.

Show question

60%

de los usuarios no aprueban el cuestionario de Momento de inercia... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration