Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|
Energía del Movimiento Armónico Simple

Estás en una de esas películas de espías. De repente, el villano te tiene atado a una silla y empieza a oscilar un péndulo delante de ti, con la intención de hipnotizarte, que no uses StudySmarter y así suspendas todos tus exámenes. Como tú eres casi un superhéroe o superheroína no te afecta la hipnosis; y, por el contrario, te…

Content verified by subject matter experts
Free StudySmarter App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Energía del Movimiento Armónico Simple

Energía del Movimiento Armónico Simple

Guarda la explicación ya y léela cuando tengas tiempo.

Guardar
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Estás en una de esas películas de espías. De repente, el villano te tiene atado a una silla y empieza a oscilar un péndulo delante de ti, con la intención de hipnotizarte, que no uses StudySmarter y así suspendas todos tus exámenes. Como tú eres casi un superhéroe o superheroína no te afecta la hipnosis; y, por el contrario, te empiezas a plantear cómo funciona la energía en un movimiento armónico simple como el del péndulo. Al final, te deshaces de la atadura y derrotas al villano. Y para calmar tu curiosidad y ansias de conocimiento, ¡ya estamos nosotros, listos a ayudarte!

La energía armónica simple es la energía que posee un oscilador cuando realiza un movimiento armónico simple.

Sistema armónico simple

El movimiento armónico simple es la oscilación periódica en la que la aceleración de un oscilador es proporcional al desplazamiento, pero actúa en sentido contrario.

Durante el movimiento armónico simple, la energía se intercambia continuamente entre las energías cinética y potencial.

La energía cinética es la que se adquiere cuando una masa \(m\) está en movimiento, mientras que la energía potencial es la energía almacenada en el oscilador cuando se ha desplazado de su posición de equilibrio.

La energía del movimiento armónico simple puede adoptar la forma de:

  • Energía potencial gravitatoria, como en el caso de una masa en un péndulo que se encuentra en una posición diferente a la de equilibrio.
  • Energía potencial elástica, como en el caso de una masa sobre un muelle.

¿Qué es la energía en un sistema armónico simple?

La energía neta en un sistema armónico simple es constante y es igual a la suma de la energía cinética y potencial.

Esto puede interpretarse de la siguiente manera:

  • Como las dos formas de energía se intercambian continuamente, cuando una de ellas aumenta, la otra disminuye. Por lo tanto, cuando una forma de energía alcanza su punto máximo, la otra forma alcanza su valor mínimo (cero).
  • Si la energía es constante, el sistema está oscilando (considerando que no hay pérdidas de energía).

Ejemplo de movimiento armónico simple

Supongamos que tenemos una masa en un péndulo que empieza a oscilar desde su posición de equilibrio. La secuencia de movimiento se muestra en la Figura 1, donde el péndulo se mueve desde la posición inicial hasta la posición máxima a la derecha del punto de equilibrio, que se considera la posición máxima positiva.

Energía del movimiento armónico simple Ejemplo péndulo StudySmarterFig.1 : Considerando la derecha como el eje positivo de las \(x\), si aplicamos una fuerza hacia esta dirección y sentido obtendremos la posición máxima positiva. El péndulo volverá y adquirirá (asumiendo los efectos de la fricción como nulos) la posición máxima negativa en el eje negativo de las \(x\).

El péndulo volverá a su punto de equilibrio, pero con el sentido contrario de la aceleración. Será entonces cuando el péndulo se desplace a la posición máxima a la izquierda del punto de equilibrio, que se considera la posición máxima negativa.

La forma de energía del péndulo depende de su posición. El péndulo gana, inicialmente, energía cinética en cuanto empieza a oscilar, mientras que la energía potencial está en su mínimo (\(E_p=0\)). Cuando el péndulo alcanza la máxima amplitud, deja de moverse momentáneamente. La energía cinética disminuye hasta 0, mientras que la energía potencial alcanza su máximo.

Cuando el péndulo continúa moviéndose en la dirección opuesta, la energía cinética comienza a aumentar, mientras que la energía potencial disminuye. Cuando el péndulo alcanza su punto de equilibrio, completando un ciclo periódico, la energía cinética alcanza su máximo, y la energía potencial vuelve a alcanzar su mínimo.

Conservación de la energía mecánica en el movimiento armónico simple

En un oscilador ideal, la energía mecánica se conserva en el movimiento armónico simple. Esto significa que no se tienen en cuenta las fuerzas externas —como la fricción, la resistencia del aire, etc—. Si la energía no se pierde debido a las fuerzas externas, se conserva en el sistema.

La energía mecánica es constante y corresponde a la suma de la energía cinética y potencial.

En el movimiento armónico simple, la energía se intercambia continuamente entre ambas formas, como hemos visto antes.

Por lo tanto, si queremos expresar esto con ecuaciones, sería así:

  • \(E_c=E_{c.Max}\) en el equilibrio o cuando \(x=0\) (Excepto cuando \(v_0=0\).

  • \(E_p=E_{p.Max}\) en las amplitudes máximas.

  • Cuando \(E_c=E_{c.Max}\), \(E_p=0\).

  • Cuando \(E_p=E_{p.Max}\) , \(E_c=0\).

Gráfica de energía en función del tiempo en el movimiento armónico simple

La conservación de la energía mecánica se ilustra en la gráfica de energía, en función del tiempo para el movimiento armónico simple (que podemos ver en la Figura. 2), donde se pueden derivar las siguientes propiedades:

  • Cuando la energía potencial es 0, la energía cinética está en su punto máximo, y viceversa.
  • Tanto la energía cinética como la potencial están representadas por funciones periódicas (seno o coseno).
  • Las dos funciones periódicas varían en direcciones opuestas.
  • La energía es siempre positiva.
  • La energía total está representada por una línea recta horizontal en el valor máximo de la energía cinética y potencial, dado que es la suma de estas dos en todo momento.
  • Durante un periodo de oscilación, la energía cinética y potencial pasan por dos ciclos completos, ya que un periodo alcanza el punto de máxima amplitud dos veces (negativa y positiva).

Energía del movimiento armónico simple Gráfico energía-tiempo del movimiento armónico simple StudySmarterFig. 2: Gráfica de la energía del movimiento armónico simple, en función del tiempo. Se puede ver que cuando la energía cinética es máxima, la potencial es mínima, y viceversa.

La energía media en un oscilador que realiza un movimiento armónico simple es la energía total del oscilador en un rango de tiempo. Este rango corresponde al tiempo que tarda el oscilador en volver a su posición de equilibrio inicial después de haber alcanzado una vez los dos puntos de amplitud.

Desplazamiento en el movimiento armónico simple

Otro gráfico interesante acerca del principio de conservación de la energía es el gráfico de energía en función del desplazamiento (Figura. 3), donde se muestra la energía total y la energía en los puntos de máxima amplitud. En el gráfico se puede observar un patrón de cambio.

Energía del movimiento armónico simple Gráfica de energía-desplazamiento del movimiento armónico simple StudySmarterFig. 3: Gráfico de energía del movimiento armónico simplefrente a desplazamiento.

  • Como el desplazamiento es una cantidad vectorial, el gráfico tiene valores de desplazamiento positivos y negativos.
  • La energía potencial es máxima en la posición de máxima amplitud; donde \(x = \pm X_{max}\); y es 0 en la posición de equilibrio, donde \(x = 0\).
    • Esto se representa con una curva en forma de U (convexa).
  • La energía total está representada por una línea recta horizontal sobre las curvas, y es constante.
  • La energía cinética es máxima en la posición de equilibrio, donde \(x = 0\); y es cero en la posición de amplitud \(x = \pm X_{max}\).
    • Esto se representa con una curva en forma de U invertida (cóncava).

Ecuación de energía del movimiento armónico simple

La ecuación de energía del movimiento armónico simple nos permite calcular la magnitud numérica de la energía de un oscilador. Esta ecuación de la energía cinética puede derivarse partiendo de la ecuación de la energía en el movimiento de traslación:

\[E_c=\dfrac{1}{2}mv^2.\]

Donde:

  • \(E_c\) es la energía cinética.
  • \(m\) es la masa.
  • \(v\) es la velocidad.

Ahora, podemos sustituir ahora la ecuación de la velocidad del movimiento armónico simple:

\[\begin{align}v&=\sqrt{\pm\omega(X_{max}^2-x^2} \\ v^2&=\omega^2(X_{max}^2-x^2) \end{align}\]

Con esto, obtenemos lo siguiente,

  • donde \(X_{max}\) es la amplitud máxima, mientras que \(x\) es la posición actual de un objeto en un momento dado.

Si el objeto está en posición de equilibrio, la energía cinética es máxima y proporcional a la amplitud máxima:

\[\begin{align}E_c&=\dfrac{1}{2}m\omega^2(X_{max}^2-x^2) \\ E_{c.Max}&=\dfrac{1}{2}m\omega^2X_{max}^2 \end{align},\]

  • Donde \(\omega=2\pi f\).

Para la energía potencial, también aplicamos la fórmula de la energía cinética, pero utilizaremos la constante del muelle \(k\). La ecuación de la energía potencial se muestra a continuación,

  • donde \(E_p\) es la energía potencial.

Si la posición del objeto es el equilibrio, la energía potencial es máxima y proporcional a la amplitud máxima:

\[\begin{align} E_p&=\dfrac{1}{2}kx^2 \\ E_{p.Max}&=\dfrac{1}{2}kX_{max}^2 \end{align} \]

La energía total puede determinarse por la suma de la energía cinética y potencial:

\[E_{Total}=E_c+E_p\]

Hagamos un ejercicio al respecto:

Una masa de \(5\,\,\mathrm{kg}\) está realizando un movimiento armónico simple. Su posición viene dada por la ecuación \(x(t) = 10\sin(2t)\).

Determina la energía cinética máxima.

Solución:

Como el objeto parece no tener fase, comenzamos utilizando la ecuación de la energía cinética máxima y sustituimos los valores de frecuencia angular, masa y amplitud de la ecuación dada:

\[E_c=\dfrac{1}{2}mX_{max}^2\omega^2\]

Utilizando la ecuación dada, y comparándola con la fórmula del desplazamiento en un momento dado, podemos deducir que la amplitud máxima es igual a \(X_{max}=10\,\,\mathrm{m}\), mientras que \(\omega\) es igual a 2:

\( x(0)=10\sin(2\cdot 0) \) \(X_{max}=10\,\,\mathrm{m}\,\,\&\,\,\omega=2\,\,\mathrm{s^{-1}} \)

Por último, sustituimos la amplitud máxima y la velocidad angular encontradas en la ecuación de energía anterior, y obtenemos:

\[E_{c.Max}=\dfrac{1}{2}\cdot 5\,\,\mathrm{kg}\cdot (10\,\,\mathrm{m})^2\cdot (2\,\,\mathrm{s^{-1}})^2=1000\,\,\mathrm{J} \]

Energía del movimiento armónico simple - Puntos clave

  • La energía armónica simple es la energía que posee un oscilador cuando realiza un movimiento armónico simple.
  • Durante el movimiento armónico simple, la energía se intercambia continuamente entre las energías cinética y potencial.
  • Como la energía mecánica se conserva en el movimiento armónico simple, la energía total es constante.
  • Las energías cinética y potencial no pueden ser negativas.

Preguntas frecuentes sobre Energía del Movimiento Armónico Simple

La energía neta en un sistema armónico simple es constante, y es igual a la suma de la energía cinética y potencial.

El movimiento armónico simple es producido por una fuerza externa inicial que hace que el objeto oscile.

La energía cinética en un movimiento armónico simple se calcula de la siguiente forma:

Ec=(1/2)mω2(X2max-x2), 

Donde:

  • ω es la frecuencia angular
  • Xmax es la amplitud máxima del oscilador.

La energía potencial en el movimiento armónico simple es aquella que es máxima cuando la amplitud es máxima y la velocidad es 0; por tanto, depende de la altura máxima a la que llega el objeto, respecto a su posición más baja de

 oscilación.
Podemos calcularla con la siguiente fórmula:
Ep=(1/2)k(X2max-x2)
donde, k es la constante del muelle.

En un oscilador ideal, la energía mecánica se conserva en el movimiento armónico simple. Esto significa que no se tienen en cuenta las fuerzas externas —como la fricción, la resistencia del aire, etc—. Si la energía no se pierde debido a las fuerzas externas, se conserva en el sistema.  

Cuestionario final de Energía del Movimiento Armónico Simple

Energía del Movimiento Armónico Simple Quiz - Teste dein Wissen

Pregunta

Un oscilador que pesa \(1\,\mathrm{kg}\) está realizando un movimiento armónico simple conectado a un muelle que tiene una constante de \(70\,\mathrm{N/m}\). Su posición viene dada por la ecuación \(x(t) = 12\cos(5t)\). Determina su energía potencial en la posición de amplitud.

Mostrar respuesta

Answer

\(2880\,\mathrm{J}\).

Show question

Pregunta

¿Cuál de las siguientes afirmaciones es cierta para un oscilador en movimiento armónico simple?

Mostrar respuesta

Answer

La energía potencial se representa mediante una curva en forma de U.

Show question

Pregunta

Una partícula está realizando un movimiento armónico simple en el que su posición viene dada por la ecuación \(x(t)=3cos(2t)\). Determina la velocidad en la posición de amplitud.

Mostrar respuesta

Answer

\(v=x^2\cdot \omega^2=36\,\mathrm{m/s}\).

Show question

Pregunta

¿Cuándo es máxima la energía potencial en el movimiento armónico simple?

Mostrar respuesta

Answer

Cuando el oscilador está en sus posiciones de amplitud máxima, donde \(x = \pm X_{max}\).

Show question

Pregunta

¿Cuál es la fórmula de la energía potencial en el movimiento armónico simple?

Mostrar respuesta

Answer

\(E_{p}=\dfrac{1}{2}kx^2\).

Show question

Pregunta

¿Cuál es la fórmula de la energía potencial máxima en el movimiento armónico simple?

Mostrar respuesta

Answer

\(E_{p.max}=\dfrac{1}{2}kX_{max}^2\).

Show question

Pregunta

¿Cuál es la fórmula de la energía cinética en el movimiento armónico simple?

Mostrar respuesta

Answer

\(E_c=\dfrac{1}{2}m\omega^2(X_{max}^2-x^2)\).

Show question

Pregunta

¿Cuál de las siguientes propiedades de la gráfica energía respecto al tiempo no es cierta?

Mostrar respuesta

Answer

La energía cinética está representada por una función periódica coseno.

Show question

Pregunta

¿Con qué tipo de funciones representamos las energías en una gráfica respecto al tiempo?

Mostrar respuesta

Answer

Funciones periódicas. 

Show question

Pregunta

¿Cuál de las siguientes afirmaciones es cierta para un oscilador en movimiento armónico simple?

Mostrar respuesta

Answer

La energía de un oscilador ideal es constante.

Show question

Pregunta

¿Qué es la energía media en el movimiento armónico simple?

Mostrar respuesta

Answer

Es la energía total en un movimiento armónico simple en un periodo de tiempo.

Show question

Pregunta

¿Qué es la energía potencial de un oscilador?

Mostrar respuesta

Answer

La energía que se almacena en el oscilador cuando se ha desplazado de la posición de equilibrio.

Show question

Pregunta

¿Qué es la energía cinética de un oscilador?

Mostrar respuesta

Answer

La energía que se adquiere cuando un oscilador está en movimiento.

Show question

Pregunta

¿Qué es la energía total en un movimiento armónico simple?

Mostrar respuesta

Answer

Es la suma de la energía cinética y potencial de un oscilador. 

Show question

Pregunta

¿Qué es la energía en el movimiento armónico simple?

Mostrar respuesta

Answer

Es la energía que tiene un oscilador cuando realiza un movimiento armónico simple.

Show question

Pon a prueba tus conocimientos con tarjetas de opción múltiple

Un oscilador que pesa \(1\,\mathrm{kg}\) está realizando un movimiento armónico simple conectado a un muelle que tiene una constante de \(70\,\mathrm{N/m}\). Su posición viene dada por la ecuación \(x(t) = 12\cos(5t)\). Determina su energía potencial en la posición de amplitud.

¿Cuál de las siguientes afirmaciones es cierta para un oscilador en movimiento armónico simple?

¿Cuándo es máxima la energía potencial en el movimiento armónico simple?

Siguiente
Conoce más sobre Energía del Movimiento Armónico Simple
60%

de los usuarios no aprueban el cuestionario de Energía del Movimiento Armónico Simple... ¿Lo conseguirás tú?

Empezar cuestionario

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free fisica cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Empieza a aprender con StudySmarter, la única app de estudio que necesitas.

Regístrate gratis
Illustration