La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
¿Sabías que cada vez que compramos en el supermercado experimentamos la segunda ley de Newton? Antes de hacer la compra, el carro vacío se desliza sin esfuerzo por el suelo. Sin embargo, cuando el carro se llena de comida, resulta más difícil de maniobrar y es posible que tengas que esforzarte para llegar a la caja. Esto es el resultado directo…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmelden¿Sabías que cada vez que compramos en el supermercado experimentamos la segunda ley de Newton? Antes de hacer la compra, el carro vacío se desliza sin esfuerzo por el suelo. Sin embargo, cuando el carro se llena de comida, resulta más difícil de maniobrar y es posible que tengas que esforzarte para llegar a la caja.
Esto es el resultado directo de la segunda ley de Newton y de la relación entre fuerza, masa y aceleración. A medida que llenas el carrito, su masa aumenta y, como resultado, ahora debes aplicar más fuerza al carrito para que este se mueva. Por tanto, ¡utilicemos este ejemplo como punto de partida para comprender la segunda ley de Newton!
En el contexto de la física, la leyenda de la manzana que cae es una historia muy conocida. Según esta leyenda, Sir Isaac Newton estaba sentado en su jardín y, de repente, le cayó una manzana en la cabeza. Entonces, este incidente le llevó a desarrollar su teoría de la gravedad.
Fig. 1: Se cree que Isaac Newton formuló la segunda ley inspirado en una manzana que cayó en su cabeza.
Ahora bien, aunque hay pruebas de que este incidente ocurrió realmente, la historia se ha embellecido considerablemente a lo largo de los años. En 2010, la Royal Society de Londres publicó el artículo original en el que se detallaba cómo Newton desarrolló su teoría de la gravedad tras el incidente de la manzana. El artículo, escrito por un contemporáneo de Newton, William Stukeley, hablaba de cómo él y Newton tuvieron una conversación bajo un manzano sobre por qué una manzana siempre cae hacia el centro de la Tierra. Sin embargo, nada indicaba que la manzana hubiera caído sobre la cabeza de Newton.
Sea o no cierta la leyenda, las aportaciones de Newton a la comunidad científica son significativas. En especial, sus tres leyes del movimiento:
Estas leyes constituyen la base de la mecánica clásica y el propio Newton las utilizó para explicar toda una serie de fenómenos relacionados con el movimiento de los objetos físicos.
La segunda ley de Newton es la ley que describe la relación entre fuerza, masa y aceleración. Esta ley establece que aceleración de un objeto es directamente proporcional a la fuerza neta que actúa sobre el objeto e inversamente proporcional a su masa.
El cambio de movimiento es directamente proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
Este es un extracto del libro Principios matemáticos de la filosofía natural publicado por Isaac Newton el 5 de julio de 1687. En este libro Newton presenta sus descubrimientos en mecánica y cálculo.
La fórmula matemática correspondiente a la definición anterior es:
\[F=ma.\]
Sin embargo, con el cálculo, esta ecuación puede escribirse como \[\begin{align}F&=m\frac{dv}{dt}\\ &=m\frac{d^2x}{dt^2}.\end{align}\]
Estas derivadas indican la relación de la aceleración con la velocidad y el desplazamiento. La aceleración es la primera derivada de la velocidad, \( a=\frac{dv}{dt}\) y la segunda derivada del desplazamiento \( a = \frac{d^2x}{dt^2}\) con respecto al tiempo.
Otra forma de cálculo de la fuerza a tener en cuenta es:
\[F=\frac{dp}{dt},\]
que es la ecuación que relaciona la segunda ley de Newton y el momento lineal \(p\).
Independientemente de la ecuación dada, todas nos dicen que la aceleración es proporcional a la fuerza neta e inversamente proporcional a la masa. Si reordenamos cualquiera de las ecuaciones para la aceleración, esta relación es fácil de ver.
Además, como la fuerza neta y la aceleración son proporcionales, su relación da una constante, que es la masa inercial o, simplemente, la masa del cuerpo. Podemos demostrarlo matemáticamente con \[ m=\frac{F}{a}. \]
Donde:
La masa es una medida cuantitativa de la inercia. Cuanto mayor es la masa de un cuerpo, más resiste la aceleración. Piénsalo así. ¿De los siguientes animales, cuál es más fácil hacer que se mueva al empujarlo: un gato o un elefante?
Entonces, a partir de nuestras ecuaciones, podemos decir que \( 1\,\mathrm{N}=1\,\mathrm{(kg\cdot m)/s^2} \).
Ya que hemos definido la segunda ley de Newton y discutido su fórmula correspondiente, veamos un ejemplo sencillo, para garantizar nuestra comprensión antes de seguir adelante.
Un bloque \( 8 \,\mathrm{kg} \) acelera a \( 2,1 \,\mathrm{\frac{m}{s^2}} \). Calcula la fuerza ejercida sobre el bloque.
Fig. 2: Bloque de masa acelerando.
Solución:
Sustituyendo los datos en la ecuación de la segunda ley de Newton, obtenemos:
\[\begin{aligned} F =& ma \\ =& (8\,\,\mathrm{kg})(2,1\,\,\mathrm{m/s})\\ =& 16,8 \,\,\mathrm{N}\end{aligned}\]
Ahora que hemos aplicado numéricamente la segunda ley de Newton, estudiaremos esta ley cualitativamente; es decir, un ejemplo con palabras, y no con números.
Considera una caja con masa \( m \) es atraída por una fuerza \( \vec{F} \) y comienza a acelerar. Como resultado, la velocidad de la caja cambia a un ritmo constante (Figura 3).
Fig. 3: Caja de masa atraída por una fuerza \(vec{F}\).
Ahora bien, si la fuerza se duplica, la velocidad aumenta y la aceleración se duplica (Figura 4).
Fig. 4: Si la fuerza se duplica, la aceleración también se duplica.
Si tanto la masa como la fuerza se duplican, la aceleración no cambia (Figura 5). Cuando se ejerce una fuerza neta sobre la caja, esta acelera en la misma dirección de la fuerza aplicada. Fuerza y aceleración son proporcionales.
Fig. 5: Caja con masa igual a \(2m\) y fuerza \(\vec{2F}\).
Una vez definida la segunda ley de Newton, analicemos su relación con el momento.
El momento es una magnitud vectorial que describe el movimiento de un objeto en términos de su masa y velocidad. Se define como el producto de la masa de un objeto por su velocidad.
Puede expresarse en términos de movimiento lineal o rotacional. Sin embargo, en este artículo nos centraremos en el momento lineal, cuya formula matemática es: \[p=mv\]
Donde
\( m \) representa la masa, en unidades de \( \mathrm{kg} \)
\( v \) representa la velocidad, en unidades de \( \mathrm{m/s} \).
La unidad SI para el momento lineal es \( \mathrm{(kg\cdot m)/s} \).
El impulso es una cantidad vectorial estrechamente relacionada con el concepto de momento.
El impulso lineal es la integral de una fuerza ejercida sobre un objeto a lo largo de un intervalo de tiempo.
La fórmula matemática correspondiente es:
\[\Delta\vec{J}=\int_{t_o}^{t}\vec{F}{(t)}dt\]
que puede simplificarse, cuando la fuerza no depende del tiempo, a \[J=F\Delta{t}\]
con \( F \) representando la fuerza y \( \Delta{t} \), el cambio en el tiempo.
El impulso y el momento están relacionados por el teorema del impulso-momento.
El teorema del impulso-momento establece que el impulso aplicado a un objeto es igual al cambio de momento del objeto.
Se representa mediante la siguiente ecuación:
\[ J=\Delta{p}, \]
siempre que la masa sea constante en todo momento.
Veámoslo con un ejercicio de ejemplo:
Imagina que una caja \( 17\,\,\mathrm{kg} \) es empujada por el suelo con una velocidad de \( 4,7\,\mathrm{\frac{m}{s} }\). ¿Cuál es el impulso de la caja? Y, si la velocidad aumenta a \(6,9,\mathrm{m/s }\), ¿cuál será el impulso impartido a la caja?
Solución:
Utilizando la ecuación \( p=mv \) podemos calcular el momento de la caja:
\[\begin{aligned} p=& mv \\ =& (17\,\,\mathrm{kg})(4,7\,\,\mathrm{m/s}) \\ =& 79,9 \,\,\mathrm{kg\cdot m /s} \end{aligned}\]
Ahora, para responder a la segunda parte de la pregunta, debemos emplear la ecuación \( J=\Delta{p} \) para calcular el impulso de la caja:
\[\begin{aligned} J =& \Delta p \\ =& mv_f -m v_i \\ =& (17\,\,\mathrm{kg})(6,9\,\,\mathrm{m/s})-(17\,\,\mathrm{kg})(4,7\,\,\mathrm{m/s}) \\ =& 117,3\,\,\mathrm{kg\cdot m/s}-79,9\,\,\mathrm{kg\cdot m/s} \\ =& 37,4 \,\,\mathrm{N\cdot s}\end{aligned}\]
Usando la ecuación \( J=\Delta{p} \), así como la definición de impulso y momento, podemos derivar la segunda ley de Newton así:
\[J=\Delta{p}\]
En consecuencia, se puede reescribir como:
\[F\Delta{t}= mv\]
Ahora, resolviendo para la fuerza, nos da:
\[F=\frac{mv}{t}\]
Nota que \( \frac{v}{t} \) es la definición de aceleración cuando la aceleración es constante y la velocidad inicial es cero. Por lo tanto, podemos reescribir la ecuación como:
\[F=ma\]
Así, obtenemos la ecuación de la segunda ley del movimiento de Newton.
También podemos usar la ecuación de la segunda ley de Newton, en términos de momento lineal para derivar \( F= ma \), de la siguiente manera.
Comenzando con la segunda ley de Newton, en términos de la derivada del momento:
\[F=\frac{dp}{dt},\]
Si sustituimos la fórmula para el momento lineal, \( p=mv, \) la ecuacion se convierte en:
\[F=\frac{d(mv)}{dt}.\]
Ahora, suponiendo que sabemos que la masa es constante, podemos factorizar \( m \):
\[F=m\dfrac{dv}{dt}.\]
En esta forma, el término \( \frac{dv}{dt} \) representa la aceleración constante, porque es la primera derivada de la velocidad. Como resultado, finalmente podemos reescribir la ecuación como:
\[F=ma,\]
Esta es la forma más reconocible de la segunda ley de Newton.
Algunas de las principales aplicaciones de la segunda ley son:
La segunda ley de Newton dice que la aceleración de un objeto depende de su masa y de la cantidad de fuerza aplicada sobre él.
La aceleración es directamente proporcional a la fuerza neta que actúa sobre el objeto e inversamente proporcional a su masa.
La segunda ley de Newton se aplica en situaciones en las que hay una fuerza neta actuando sobre un objeto, lo que resulta en una aceleración del objeto.
Algunas de las principales aplicaciones de la segunda ley son:
Algunos ejemplos de la segunda ley de Newton son:
de los usuarios no aprueban el cuestionario de Segunda ley de Newton... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free fisica cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.