Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Ecuaciones

Ecuaciones

Desde tus primeras clases con álgebra, seguro que viste expresiones como \(2x+3=2\) y te preguntaste qué era eso. Podías sumar o restar números; pero ahora tenías, además, letras en ello. Estas letras representaron nuevos valores desconocidos y , como ahora sabes, para que la igualdad se cumpla, deben tener solo ciertos valores.

Estas letras, los números y las operaciones que las ligaban son lo que conoces ahora como ecuaciones. De estas ecuaciones es de lo que te hablaremos en este artículo.

Ecuaciones

Las ecuaciones son el conjunto de números, variables y operaciones que están relacionadas entre sí y que son iguales a cierto valor.

Las ecuaciones están construidas por:

  • Números: que pueden ser enteros, racionales, reales, imaginarios, etc.

  • Operaciones: que pueden ser las básicas —como la suma, resta, división, producto, potenciación— o más complejas —como derivadas e integrales—.

  • Variables: que son valores que se desconocen. Pueden tener un único valor, o varios; se denotan por las letras \((x,y,z\) generalmente, pero pueden usar cualquier otro símbolo.

Algunos ejemplos de ecuaciones son:

\[3x=0\]

\[3x+2y^2=2\]

\[\int x^2 dx=e^0\]

\[z+i=0\]

Algunas de las ecuaciones anteriores son algo más complicadas de lo que trataremos aquí, especialmente las últimas dos. Pero te sirven de ejemplo para observar que encontrarás muchas de estas formas en tus libros de texto.

Las materias en las que (muy probablemente) encontrarás ecuaciones son:

  • Matemáticas

  • Física

  • Química

  • Biología

  • Economía

  • Administración

  • Ciencias sociales

  • Geografía

  • etc.

La razón por la que puedes encontrar ecuaciones en todas estas ciencias, y varias más, es que muchas veces estas ecuaciones son las expresiones matemáticas que te dicen cómo se comporta un modelo.

Un modelo es una representación de un evento. Puede ser, por ejemplo, el modelo matemático de un objeto cayendo o el modelo que describe el crecimiento de la población de una especie. Estos modelos se expresan usando ecuaciones matemáticas.

Tipos de ecuaciones

Hay muchos tipos de ecuaciones, y dependen de cómo se categorizan. Una manera de categorizar ecuaciones es usando su grado.

El grado de una ecuación es la potencia más alta de la variable que esta posee.

Por ejemplo, una ecuación que solo contiene variables en \(x\) y cuya mayor potencia es un cuadrado \(x^2\) es, en este caso, una cuadrática o una ecuación de segundo grado.

En general las ecuaciones, si se clasifican de esta manera, pueden ser:

  • Lineales o de primer grado.

  • Cuadráticas o de segundo grado.

  • Cúbicas o de tercer grado.

  • Polinomios, que son cualquier ecuación con un grado superior a uno. Pero, podemos generalizarlos a mayor que tres, en este artículo.

A continución, te hablaremos de las ecuaciones de primer y segundo grado.

Ecuaciones de primer grado

Las ecuaciones de primer grado, como te mencionamos anteriormente, son ecuaciones donde el grado mayor de la variable es uno. Puedes ver algunos ejemplos de ecuaciones lineales abajo.

\[2x+3=0\]

\[3x-4=2\]

\[x=1\]

\[y=3x-3\]

Como notarás, hay una diferencia entre las primeras ecuaciones y la última; las cuatro son ecuaciones lineales, sin embargo, hay diferencias entre ellas:

  • Las primeras ecuaciones tienen una incógnita, y cuando se resuelven producen un valor único para cada \(x\).
  • Mientras que la segunda ecuación puede tomar cualquier valor de \(x\) y le asigna un valor a \(y\), por lo que ambas pueden tomar cualquier valor. Ese tipo de ecuaciones, en este caso, representan una recta.

Ecuaciones de rectas

En las ecuaciones de las rectas, al valor desconocido de \(x\) se le asignan valores continuos para darle un valor a \(y\).

La ecuación de una recta se compone así: \[y=mx+b\]

Aquí las partes son:

  • \(m\) es la pendiente de la recta que nos dice la inclinación de esta.

  • \(x\) es la variable.

  • \(b\) es la ordenada al origen, es una constante que desplaza la recta en el plano cartesiano.

Las ecuaciones de este tipo tienen una representación gráfica, como la siguiente:

Ecuaciones recta StudySmarter

Fig. 1. Imagen de una recta con pendiente \(m\) positiva.

La pendiente, en estas ecuaciones, puede ser negativa, como: \[y=-mx+b\]

En este caso, las ecuaciones se ven del siguiente modo:

Ecuaciones recta StudySmarter

Fig. 2. Imagen de una recta con pendiente \(-m\).

Resolver ecuaciones de primer grado

Para resolver ecuaciones de primer grado que no son rectas, lo que debes hacer es despejar la variable, de tal modo que quede igualada a un número. Hagamos unos ejercicios al respecto:

Resuelve la siguiente ecuación lineal:

\[x-3=0\]

Solución:

Primero, sumamos un \(3\) a los dos lados del igual:

\[x-3+3=0+3\]

Segundo, realizamos las operaciones para llegar al valor de la \(x\):

\[x=+3\]

Resuelve la siguiente ecuación lineal:

\[4x-2=0\]

Solución:

Primero, sumamos \(2\) a cada lado de la igualdad:

\[4x-2+2=0+2\]

Segundo, realizamos las operaciones necesarias para simplificar:

\[4x=+2\]

Tercero, pasamos el cuatro del lado derecho de la igualdad dividiendo —que es lo mismo que dividir cada lado de la igualdad entre \(4\)—:

\[\dfrac{4x}{4}=+\dfrac{2}{4}\]

Cuarto, simplificamos de nuevo los números que se puedan simplificar, como \(\frac{2}{4}\) a \(\frac{1}{2}\):

\[x=+\dfrac{1}{2}\]

Ecuaciones de segundo grado

Las ecuaciones de segundo grado son las ecuaciones en las que la potencia más grande de la expresión es un dos, como \(x^2\).

Ejemplos de ecuaciones cuadráticas son:

  • \[x^2+x=0\]

  • \[3x+x^2+1=y\]

Aquí, nuevamente, hay diferencias entre ambas:

  • La primera, nuevamente es una ecuación donde hay soluciones para que se cumpla la igualdad.
  • La segunda, es una ecuación donde \(x\) obtiene valores arbitrarios y asigna su resultado a otra variable que es \(y\).

En estos casos, los puntos en un plano cartesiano describen una parábola.

Una parábola por lo general tienen la forma: \[ax^2+bx+c=y\]

Aquí las partes de la ecuación son:

  • \((a, b, c)\) son coeficientes que son valores numéricos.

  • \(x\) es la variable independiente y toma cualquier valor numérico real.

  • \(y\) es la variable dependiente.

La forma de una parábola se puede ver a continuación.

Ecuaciones parábola StudySMarter

Fig. 3. Imagen de una parábola sin raíces.

Si quieres aprender más acerca de las parábolas puedes leer el artículo sobre la parábola.

Ecuaciones segundo grado y la fórmula cuadrática

Para resolver las ecuaciones cuadráticas que no representan curvas, debes encontrar los valores de \(x\) que cumplen la igualdad. Esto se puede hacer, para algunas de estas ecuaciones, que es La fórmula cuadrática es: \[x_{1,2}=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}\]

Aquí hay dos subíndices, debido a que hay dos soluciones \(x_1\) y \(x_2\).

Hagamos un par de ejemplos.

Calcula las soluciones de la siguiente ecuación cuadrática: \[2x^2-2x-4=0\]

Solución:

Primero, ordenamos los coeficientes de la ecuación; estos son:

\[(a=2, b=-2, c=-4)\]

Segundo, los sustituimos la ecuación original:

\[x_{1}=\dfrac{-(-2) - \sqrt{(-2)^2-4(2)(-4)}}{2(2)}\]

\[x_{2}=\dfrac{-(-2) + \sqrt{(-2)^2-4(2)(-4)}}{2(2)}\]

Tercero, si hacemos las operaciones, obtenemos: \(x_1\) y \(x_2\).

\[x_1=-1\]

\[x=2\]

Estas son las soluciones de nuestra ecuación.

Calcula las soluciones de la siguiente ecuación cuadrática: \[2x^2+2x+4=0\]

Solución:

Primero, ordenamos los coeficientes de la ecuación; estos son:

\[a=2, b=2, c=4\]

Segundo, los sustituimos en la ecuación original:

\[x_{1}=\dfrac{-(2) - \sqrt{4-16}}{4}\]

\[x_{2}=\dfrac{-(2) + \sqrt{4-16}}{4}\]

Aquí, podemos ver algo curioso y es que, si seguimos con las operaciones, obtenemos una raíz negativa:

\[x_{1}=\dfrac{-(2) - \sqrt{-12}}{4}\]

\[x_{2}=\dfrac{-(2) + \sqrt{-12}}{4}\]

Esto significa que la ecuación no tiene raíces reales, por lo tanto nunca cruza el eje de las \(x\).

Ecuaciones - puntos clave

  • Las ecuaciones son el conjunto de números, variables y operaciones que están relacionadas entre sí, y que son iguales a cierto valor.
  • En general, si las ecuaciones se clasifican de esta manera, pueden ser:
    • Lineales o de primer grado.
    • Cuadráticas de segundo grado.
    • Cúbicas o de tercer grado.
    • Polinomios, que son cualquier ecuación con un grado superior a uno; pero, se pueden generalizar a mayor que tres, en este artículo.
  • Cuando las ecuaciones de primer grado representan una recta, su forma es: \(y=mx+b\).
  • Cuando las ecuaciones de segundo grado representan una parábola, su forma es: \(y=ax^2+bx+c\).

Preguntas frecuentes sobre Ecuaciones

Una ecuación es un enunciado matemático que define la igualdad entre dos expresiones. Estas expresiones pueden ser algebraicas o numéricas.

Paso 1: Simplificar ambos lados de la ecuación, multiplicando los paréntesis. 

6x-3=4x-8


Paso 2: Ordenar (sumando o restando) la ecuación, para que todos los términos semejantes estén en los mismos lados de la ecuación. 

6x-4x=3-8

2x=-5


Paso 3: Utilizar la multiplicación o la división para resolver la ecuación, determinando el valor de la variable. 

x=-5/2

Para despejar una ecuación debes, en todos los casos, dejar la variable que intentamos despejar de un solo lado de la ecuación. Para ello, hay que pasar los términos del otro lado, usando la operación inversa. Si hay términos sumando, pasa restando; si hay términos multiplicando, pasan dividiendo.

Se pasa del otro lado de la ecuación, multiplicando. 

Por ejemplo: 

3x/2=5
3x=5x2

Cuestionario final de Ecuaciones

Pregunta

¿Cuál es la diferencia entre ecuaciones y expresiones?

Mostrar respuesta

Answer

Una ecuación es un enunciado matemático con símbolos y que posee una igualdad, una expresión no tiene símbolo de igualdad.

Show question

Pregunta

¿Cuál es la diferencia entre expresiones algebraicas y numéricas?

Mostrar respuesta

Answer

Expresiones algebraicas contienen variables, mientras que las numéricas contienen solo números.

Show question

Pregunta

¿Qué condiciones diferencian un polinomio de una ecuación?

Mostrar respuesta

Answer

Un polinomio no debe contener:

  • Exponentes fraccionarios.

  • Exponentes negativos

  • Divisiones

  • Raíces.

Show question

Pregunta

¿Qué significa el grado de un polinomio?

Mostrar respuesta

Answer

El valor más grande de su exponente.

Show question

Pregunta

Describe los tres primeros grados de un polinomio y sus características.

Mostrar respuesta

Answer

Lineales, con un grado de \(1\), donde el mayor exponente es una \(x\).

Cuadráticas, con un grado de \(2\), donde el mayor exponente es una \(x^2\).

Cúbicas, con un grado de \(3\), donde el mayor exponente es una \(x^3\).



Show question

Pregunta

¿Qué es una ecuación lineal?

Mostrar respuesta

Answer

Es una ecuación polinómica en la cual todas sus variables están elevadas a la potencia de 1.

Show question

Pregunta

¿Cual es la forma estándar de una ecuación de dos variables?

Mostrar respuesta

Answer

\(y=mx+b\).

Show question

Pregunta

¿Cuál es la forma punto-pendiente de una ecuación lineal?

Mostrar respuesta

Answer

\(y=mx+b\).

Show question

Pregunta

Dibuja una gráfica lineal.

Mostrar respuesta

Answer

Show question

Pregunta

Se tiene la ecuación del tipo \(ax=0\), ¿cuál es la raíz de esta ecuación?

Mostrar respuesta

Answer

\(x=0\).

Show question

60%

de los usuarios no aprueban el cuestionario de Ecuaciones... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.