|
|
Operaciones con límites

Si ya has leído nuestro artículo sobre Límites y continuidad, sabes lo que es un límite y cómo calcularlo. Sin embargo, en ese artículo además explicamos su aplicación para determinar la continuidad de una función.

Mockup Schule

Explora nuestra app y descubre más de 50 millones de materiales de aprendizaje totalmente gratis.

Operaciones con límites

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Si ya has leído nuestro artículo sobre Límites y continuidad, sabes lo que es un límite y cómo calcularlo. Sin embargo, en ese artículo además explicamos su aplicación para determinar la continuidad de una función.

Pero no todo acaba ahí, porque muchos límites pueden tener que calcularse sobre funciones que contienen sumas, restas, multiplicaciones, etc. Entonces necesitamos saber cómo operar con los límites, para llegar a un resultado final. Por tanto, sigue leyendo para aprender a operar con límites.

Operaciones con límites de funciones

Como ya sabes, los límites tratan de calcular el valor de una función cuando la variable tiende hacia cierto valor. A veces, la variable puede tener a un valor concreto (como un número real), pero también puede tender hacia el infinito o menos infinito.

Por tanto, muchas veces ocurrirá que se opera entre dos funciones y, después, queremos saber un cierto límite de esta función final. Para ello, hay ciertas propiedades que deben tenerse en cuenta.

Propiedades de los límites

Hay ciertas propiedades de los límites que se cumplen para que podamos hacer operaciones con ellos:

1. El límite de una función cuando existe es único.

2. Si \(\displaystyle\lim_{x\to a} f(x)=b_1\) y \(\displaystyle\lim_{x\to a} g(x)=b_2\), siendo \(b_1\) y \(b_2\) números reales, se verifica que:

\[\lim_{x\to a} (f(x)\pm g(x))=b_1\pm b_2\]\[\lim_{x\to a} \dfrac{f(x)}{g(x)}=\dfrac{b_1}{b_2}, \space b_2\neq 0\]
\[\lim_{x\to a} (f(x)g(x))=b_1 b_2\]\[\lim_{x\to a} \left(f(x)^{g(x)}\right)=b_1^{b_2},\space b_1>0\]

Tabla 1. Propiedades de los límites.

3. Si \(\displaystyle\lim_{x\to a} f(x)\) existe y es finito, se cumplen las siguientes propiedades:

\[\lim_{x\to a} (f(x))^p=\left(\lim_{x\to a} f(x) \right)^p\]\[\lim_{x\to a} \sin(f(x))=\sin\left( \lim_{x\to a} f(x)\right)\]
\[\lim_{x\to a} \sqrt[n]{f(x)}=\sqrt[n]{\lim_{x\to a} f(x)}\]\[\lim_{x\to a} \cos(f(x))=\cos\left( \lim_{x\to a} f(x)\right)\]
\[\lim_{x\to a} e^{f(x)}=e^{\displaystyle\lim_{x\to a} f(x)}\]\[\lim_{x\to a} \tan(f(x))=\tan\left( \lim_{x\to a} f(x)\right)\]
\[\lim_{x\to a} \ln(f(x))=\ln\left(\lim_{x\to a} f(x)\right)\]

Tabla 2. Propiedades de los límites.

Cálculo de límites

Según las anteriores propiedades, es posible calcular el límite de una función siempre que su resultado tenga sentido en \(\mathbb R\). Para calcular el límite solo hay que sustituir la variable por el valor al que tiende. Al hacer esto, se pueden obtener resultados que son valores determinados o resultados que son indeterminaciones.

Si se obtiene un resultado con sentido, se trata de un límite determinado y aquí acaba el cálculo.

\[\lim_{x\to 2} \dfrac{x-3}{x^2+1}=\lim_{x\to 2} \dfrac{2-3}{4+1}=-\dfrac{1}{5}\]

\[\lim_{x\to +\infty} (x^2+5)=\lim_{x\to +\infty} (+\infty+5)=+\infty\]

Sin embargo, puede ocurrir que al calcular el límite obtengamos un cero en el denominador y el numerador sea cualquier número real distinto de cero. En este caso, el límite tiende en valor absoluto al infinito, pero debemos determinar si tiende a \(+\infty\) o a \(-\infty\). Para ello, determinamos el límite por la izquierda y por la derecha del valor al que tiende la variable, pudiendo ser diferente el resultado para cada lado.

\[\lim_{x\to 2} \dfrac{x^2+3}{x-2}=\lim_{x\to 2}\dfrac{7}{0}\]

Se calculan los límites laterales:

\[\lim_{x\to 2^-} \dfrac{x^2+3}{x-2}=\lim_{x\to 2^-} \dfrac{7}{0^-}=-\infty\]

\[\lim_{x_to 2^+} \dfrac{x^2+3}{x-2}=\lim_{x\to 2^+} \dfrac{7}{0^+}=+\infty\]

Por último, al calcular un límite puede pasar que el resultado sea una expresión indeterminada; es decir, no es un número real, ni se puede saber exactamente a qué tiende. En estos casos, estamos tratando con límites indeterminados. En esos casos, deberemos tratar el límite de alguna forma, o con algún método, para llegar a una expresión equivalente que dé un resultado que tenga sentido.

\[\lim_{x\to 0} \dfrac{\sin(x)}{x}=\dfrac{0}{0}\]

Este cociente es una indeterminación, porque no sabemos hacia qué valor tiende realmente.

Te enseñaremos a resolver estas indeterminaciones en los siguientes párrafos. ¡Sigue leyendo!

Operaciones con límites infinitos

Hay casos en los que los límites tratan con infinitos. Como esta cantidad es distinta a un número real, debemos tener en cuenta lo siguiente.

1. Suma de límites:

\[a+\infty=\infty\]\[+\infty+\infty=+\infty\]
\[a-\infty=-\infty\]\[-\infty-\infty=-\infty\]

Tabla 3. Propiedades se la suma de límites donde hay infinitos.

2. Producto de límites:

\[(+\infty)·(+\infty)=+\infty\]\[(-\infty)·(-\infty)=+\infty\]
\[(+\infty)·(-\infty)=(-\infty)·(+\infty)=-\infty\]
\[\text{Si } a>0:\]\[a·(+\infty)=+\infty\]\[a·(-\infty)=-\infty\]\[\text{Si } a<0:\]\[a·(+\infty)=-\infty\]\[a·(-\infty)=+\infty\]

Tabla 4. Propiedades del producto de límites donde hay infinitos.

3. Cociente de límites:

\[\dfrac{a}{+\infty}=0\]\[\dfrac{a}{-\infty}=0\]
\[\text{Si } a<0:\]\[\dfrac{+\infty}{a}=+\infty\]\[\dfrac{-\infty}{a}=-\infty\]\[\text{Si } a<0:\]\[\dfrac{+\infty}{a}=-\infty\]\[\dfrac{-\infty}{a}=+\infty\]

Tabla 5. Propiedades del cociente de límites donde hay infinitos.

4. Potencia de límites:

\[\text{Si } n\in \mathbb N \text{ entonces } (+\infty)^n=+\infty\]
\[\text{Si \(n\) es impar, entonces } (-\infty)^n=-\infty \]\[\text{Si \(n\) es par, entonces } (-\infty)^n=+\infty \]
\[\text{Si } a>1:\]\[a^{+\infty}=+\infty\]\[a^{-\infty}=0\]\[\text{Si } 0<a<1:\]\[a^{+\infty}=0\]\[a^{-\infty}=+\infty\]
\[(+\infty)^{+\infty}=+\infty\]\[(+\infty)^{-\infty}=0\]

Tabla 6. Propiedades de la potencia de límites donde hay infinitos.

Estas igualdades solo se entienden como límites.

Indeterminaciones

Como ya mencionamos anteriormente, al calcular un límite, puede que lleguemos a una expresión que es una indeterminación. Por tanto, tendremos que saber modificar estas expresiones para llegar a un resultado coherente.

Indeterminación \(\dfrac{\infty}{\infty}\)

Si el numerador y el denominador son polinomios, solo hay que mirar el grado de estos: es decir, el exponente más alto de cada polinomio.

Si tenemos los polinomios \(P(x)\) de grado \(p\) y \(Q(x)\) de grado \(q\):

  • Si \(p<q\): \(\displaystyle\lim_{x\to \infty} \dfrac{P(x)}{Q(x)}=0\).

  • Si \(p=q\): \(\displaystyle\lim_{x\to \infty} \dfrac{P(x)}{Q(x)}=a, \space a\in \mathbb R\).

  • Si \(p>q\): \(\displaystyle\lim_{x\to \infty} \dfrac{P(x)}{Q(x)}=\pm\infty\).

En los demás casos en los que las funciones no sean polinomios, para resolver este tipo de indeterminación, se aplica la regla de L'Hôpital la cual puedes encontrar explicada en su propio artículo donde también verás más ejemplos.

Indeterminación \(\infty-\infty\)

En general, esta indeterminación se puede eliminar operando dentro de la expresión. En los casos en los que hay radicales, suele funcionar multiplicar por el conjugado.

\[\lim_{x\to 2^+} \left(\dfrac{x^2-3}{x-2}-\dfrac{x}{x^2-4}\right)=\dfrac{1}{0^+}-\dfrac{2}{0^+}=\infty-\infty\]

Llegamos a una indeterminación, por lo que operamos los dos cocientes:

\[\begin{align} \lim_{x\to 2^+} \left(\dfrac{x^2-3}{x-2}-\dfrac{x}{(x-2)(x+2)}\right)&=\lim_{x\to 2^+} \dfrac{(x^2-3)(x+2)-x}{x^2-4}=\\&=\lim_{x\to 2^+} \dfrac{x^3+2x^2-4x-6}{x^2-4}=\\&=\dfrac{2}{0^+}=\\&=+\infty\end{align}\]

\[\lim_{x\to +\infty} \left( x-\sqrt{x^2-2} \right)=\infty-\infty\]

Llegamos, de nuevo, a una indeterminación. En este caso, multiplicamos y dividimos por el conjugado de la raíz:

\[\begin{align} \lim_{x\to +\infty} \left( x-\sqrt{x^2-2} \right)&= \lim_{x\to +\infty} \left( \dfrac{(x-\sqrt{x^2-2})(x+\sqrt{x^2-2})}{x+\sqrt{x^2-2}} \right)=\\&= \lim_{x\to +\infty} \left( \dfrac{\cancel{x^2}-\cancel{x^2}+2}{x+\sqrt{x^2-2}} \right)=\\&=\lim_{x\to +\infty} \dfrac{2}{x+\sqrt{x^2-2}}=\\&=\dfrac{2}{+\infty+\infty}=\dfrac{2}{+\infty}=0 \end{align}\]

Indeterminación \(\dfrac{0}{0}\)

Puede ocurrir que tanto numerador como denominador en el límite buscado ambos tiendan a cero. Esto es una indeterminación y la manera más fácil de resolverla es aplicando la regla de L'Hôpital.

\[\lim_{x\to 0} \dfrac{\sin(x)}{x}=\dfrac{0}{0}\]

Aplicamos la regla de L'Hôpital:

\[\lim_{x\to 0} \dfrac{\sin(x)}{x}=[LH]=\lim_{x\to 0} \dfrac{\cos(x)}{1}=\cos(0)=1 \]

Indeterminación \(1^\infty\)

Si las funciones implicadas son polinomios, podemos operar con la expresión para llegar a la definición del número e:

\[\lim_{f(x)\to \infty} \left(1+\dfrac{1}{f(x)}\right)^{f(x)}=e\]

Por tanto, cuando tenemos esta indeterminación, y \(\displaystyle\lim_{x\to a} f(x)=1\) y \(\displaystyle\lim_{x\to a} g(x)=\infty\), podemos resolverla usando:

\[\lim_{x\to a} f(x)^{g(x)}=e^{\displaystyle\lim_{x\to a} g(x)[f(x)-1]}\]

\[\lim_{x\to +\infty} \left( \dfrac{x+1}{x-3} \right)^{x+2}=1^\infty\]

Podemos aplicar la fórmula anterior:

\[\begin{align} \lim_{x\to +\infty} \left( \dfrac{x+1}{x-3} \right)^{x+2}&=e^{\displaystyle\lim_{x\to \infty} (x-2)\left( \dfrac{x+1}{x-3}-1\right)}=\\&=e^{\displaystyle\lim_{x\to \infty} (x-2)\left( \dfrac{4}{x-3}\right) }=\\&=e^{\displaystyle\lim_{x\to \infty} \left( \dfrac{4x-8}{x-3}\right)}=\\&=e^4 \end{align}\]

Por último, existen otras indeterminaciones:

  • La indeterminación \(0·\infty\) se puede reexpresar para dar \(\frac{0}{0}\) o \(\frac{\infty}{\infty}\).

  • Las indeterminaciones \(0^0\) y \(\infty^0\) se expresan como exponenciales y se calculan como con las indeterminaciones anteriores.

\[\lim_{x\to 0} x^2\dfrac{x+2}{\sin(x)}=0·\dfrac{2}{0}=0·\infty\]

Podemos reordenar la expresión para llegar a otro tipo de indeterminación que sabemos resolver:

\[\lim_{x\to 0} x^2\dfrac{x+2}{\sin(x)}=\lim_{x\to 0} \dfrac{x^3+2x^2}{\sin(x)}=\dfrac{0}{0}=[LH]=\lim_{x\to 0} \dfrac{3x^2+4x}{\cos(x)}=\dfrac{0}{1}=0\]

Operaciones con límites - Puntos clave

  • El límite de una función, cuando existe, es único.
  • Para calcular el límite, solo hay que sustituir la variable por el valor al que tiende.
    • Si se obtiene un resultado con sentido, se trata de un límite determinado, y aquí acaba el cálculo.
    • Si al calcular el límite obtenemos un cero en el denominador y el numerador es cualquier número real distinto de cero, el límite tiende en valor absoluto al infinito.
    • Puede pasar que el resultado sea una expresión indeterminada: es decir, una indeterminación.
  • La indeterminación \(\frac{\infty}{\infty}\) se resuelve aplicando L'Hôpital o mirando el grado del numerador y denominador si son polinomios.
  • La indeterminación \(\infty-\infty\) se suele resolver operando dentro de la expresión y, si hay radicales, multiplicando y dividiendo por el conjugado.
  • La indeterminación \(\frac{0}{0}\) también se puede resolver aplicando la regla de L'Hôpital.
  • La indeterminación \(1^\infty\) se resuelve aplicando la fórmula: \[\lim_{x\to a} f(x)^{g(x)}=e^{\displaystyle\lim_{x\to a} g(x)[f(x)-1]}\]

Preguntas frecuentes sobre Operaciones con límites

Para calcular el límite, solo hay que sustituir la variable por el valor al que tiende. Al hacer esto, se pueden obtener resultados que son valores determinados, o resultados que son indeterminaciones.

Para calcular el límite solo, hay que sustituir la variable por el valor al que tiende. Al hacer esto, se pueden obtener resultados que son valores determinados, o resultados que son indeterminaciones.


Si obtienes una indeterminación, dependiendo del tipo, tendrás que aplicar un método u otro.

El límite de una función es el valor b al que se acerca la función cuando x tiende a un valor a:

limx—>a f(x)=b


Por ejemplo:

limx—>2 x2=4

Los límites tienen propiedades de suma y resta, multiplicación, división y potenciación. Además, también existen más propiedades con funciones como las trigonométricas, las exponenciales, los logarítmos, etc.

Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

  • Tarjetas y cuestionarios
  • Asistente de Estudio con IA
  • Planificador de estudio
  • Exámenes simulados
  • Toma de notas inteligente
Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter. Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Entdecke Lernmaterial in der StudySmarter-App

Google Popup

Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

  • Tarjetas y cuestionarios
  • Asistente de Estudio con IA
  • Planificador de estudio
  • Exámenes simulados
  • Toma de notas inteligente
Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.