Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Funciones Matemáticas

Funciones Matemáticas

Las funciones son relaciones que involucran un elemento de entrada y un elemento de salida. No deben ser confundidas con las funciones exponenciales, logarítmicas y trigonométricas, que son operaciones específicas para una cantidad.

Funciones matemáticas

Las funciones son las relaciones entre dos números, estas relaciones están dadas por alguna operación. Por lo que a cada número de entrada le corresponde un número de salida. Un ejemplo de esto es la función \(y=x+1\). Aquí, el número de salida es \(y\), el de entrada es \(x\) y se dice que el número de salida es el número de entrada más la unidad. Así, por ejemplo, el número \(x=2\) daría \(y=3\). Pero una función se encuentra de manera más común como \(f(x)\).

Si usamos \(f(x)\), esto significa que las operaciones pueden ser escritas como \(f\) y la variable de entrada como \(x\), lo que crea la expresión \(f(x)\). Las funciones pueden ser más complejas o muy simples. Por ejemplo,o. Además, las funciones también se pueden dividir en varios tipos, como funciones inversas o funciones compuestas.

Características generales de las funciones matemáticas y mapeos

Los mapeos toman uno o varios datos de entrada de un conjunto de números y lo transforman en uno o varios datos de salida.

En la siguiente imagen podemos ver distintos tipos de mapeos:

Funciones Funciones matemáticas StudySmarterFig. 1. Existen distintos tipos de mapeo. El mapeo que nos indica que obtenemos un valor mediante otro (uno a uno) es considerado una función.

Un mapeo únicamente puede considerarse una función si este establece que para cada valor \(x\) (lo que es denominado como dominio), existe un único valor\(y\) (rango). Esto es debido a que para cada valor \(y\) pueden existir varios valores de \(x\).

  • El primer caso se conoce como uno a uno; es decir, por cada valor \(y\) hay una sola \(x\): \(x \rightarrow y\).

  • El segundo caso se conoce como varios a uno, en este caso a un mismo valor dele pueden corresponder varios valores de \(x\): \(y \rightarrow (x_1, x_2)\). Este caso, por ejemplo, corresponde a la función cuadrática \(f(x)=x^2\) donde, al valor de \(y=1\) le corresponden los valores de \(x=(-1, 1)\).

Dos conceptos relevantes que conciernen a los mapeos y funciones son el dominio y el rango:

  • Dominio: el conjunto de valores de entrada donde está definida la función o mapeo.

  • Rango: el conjunto de valores de salida de la función o mapeo, como resultado de la actuación sobre el dominio.

Funciones matemáticas compuestas

Una función compuesta involucra la combinación de dos o más funciones para producir una nueva función.

Por tanto, esta es una función de una función. Podríamos expresarlo como \(f(g(x))\). Esta expresión significa que primero existe la función \(g\), que tiene por variable de entrada \(x\), y el resultado de esto, que es \(g(x)\), es usado como dato de entrada en la función \(f\).

Dado \(f(x)=x+2\) y \(g(x)=3x-1\), encuentra \(f(g(x))\) para \(x=4\).

Solución

Primero se necesita resolver \(g(x=4)\):

\[g(4)=3(4)-1\]

\[g(4)=11\]

Ahora, este valor es utilizado como el valor de entrada para encontrar \(f(g(x))\):

\[f(11)=11+2\]

\[f(11)=13\]

De este modo, \(f(g(4))=13\).

Es importante remarcar que el orden de composición es relevante, ya que \(f(g(x))\) no es lo mismo que \(g(f(x))\).

Veamos el resultado, si aplicamos \(g(f(x))\):

  • Dado \(f(x)=x+2\) y \(g(x)=3x-1\), encuentra \(g(f(x))\) cuando \(x=4\).

\[f(4)=4+2\]

  • Entonces hay que resolver \(f(x=4)\):

\[g(6)=3(6)-1\]

  • Ahora, utilizaremos este valor en \(g(f(x))\):
  • De este modo, \(g(f(x))=17\).

Como puedes ver, el resultado no es el mismo en función del orden que apliquemos. Es por esto que tenemos que entender bien qué queremos calcular.

Funciones matemáticas inversas

Una función inversa es la función que “realiza las operaciones contrarias” a la función original. Dicho de otra manera, esta función opera sobre las elementos de salida de la función original y devuelve las variables de entrada.

Las funciones inversas se denotan por el símbolo \(f^{-1}(x)\). La función inversa toma el rango de la función (los datos de salida) y obtiene el dominio de la función original (los datos de entrada). Si representamos gráficamente una función y su inversa, podríamos ver cómo ambas son el reflejo de la otra.

Considera la función:

\[f(x)=2x+4\]

entonces:

\[f(x)=2x+4=y\]

\[y=2x+4\]

\[x=\dfrac{y=4}{2}=f^{-1}(x)\]

Funciones comunes

En tus clases de matemáticas, habrá ciertas funciones comunes que te encontrarás. Algunas de ellas son las siguientes:

  • Exponenciales.

  • Logaritmos.

  • Funciones racionales.

  • Funciones irracionales.

Estas se pueden usar para formar funciones más complejas. Por ejemplo, la función exponencial de una variable sería:

\[f(x)=e^x\]

Pero, usando esta función en una función irracional, podríamos tener:

\[f(x)=\dfrac{e^{2x}}{x}\]

Esto hace a nuestra función más compleja, ya que en cierto sentido es una composición de funciones.

Funciones exponenciales

Las funciones exponenciales son funciones donde el crecimiento o decrecimiento de la función sigue una tendencia exponencial. Esta tendencia le permite crecer o decrecer muy rápidamente. Ejemplos de crecimientos exponenciales son los que siguen las poblaciones de las grandes ciudades.

Esta función puede ser encontrada en leyes físicas, químicas y de biología; una de ellas es el decaimiento radioactivo.

\[N=N_0e^{\frac{-t}{\lambda}}\]

En esta ley, \(N_0\) es el número de partículas radiactivas al inicio, \(t\) es tiempo que ha pasado y lambda \(\lambda\) es una constante que depende de cada material.

Funciones logarítmicas

Los logaritmos son la función inversa de los exponenciales. El logaritmo natural, por ejemplo, es el inverso de la función exponencial \(\e^x). Hay varias clases de logaritmos. Estos dependen de la base del logaritmo, que es el número o letra en la parte inferior del símbolo, como podrás ver a continuación. Esta base nos indica cuál sería la base en la función exponencial:

\(log_a\), logaritmo de base "z".

El logaritmo natural se define como: \(ln=log_e\).

El logaritmo de base diez se define como: \(log=log_{10}\).

El logaritmo de base \(a\), donde\(a\) es cualquier valor, se define como: \(log_a\).

Funciones racionales

Las funciones racionales con aquellas que pueden ser expresadas como el cociente de dos polinomios. Estas funciones pueden tener discontinuidades, es decir, valores donde la función no existe. Estos valores no están dentro del dominio de la función. Este tema lo puedes aprender con más profundidad en nuestro artículo de Continuidad, de momento veremos solo un ejemplo básico.

La función \(4x^2+2x+2 \over x-1\) es continua, ya que puede tomar cualquier valor de \(x\), excepto \(1\).

Si observas bien, cuando \(x=1\), la parte inferior es igual a \(0\).

\(4+2+2\over0\)=\(8\over0\)

Sabemos que esta operación no es posible, así que el valor de \(y=0\), o el rango de la función, no existe para \(x=1\). Esta es, de hecho, una discontinuidad.

Funciones irracionales

Las funciones irracionales son funciones en las que existe una raíz. Estas funciones están acotadas en su dominio, ya que los valores dentro de la raíz no pueden ser negativos. Cualquier función con un radical (raíz) que no se puede simplificar es una función irracional.

Algunos ejemplos de funciones racionales son:

\[f(x)=\sqrt{x+2}\]

\[f(x)=2+\sqrt{x^2-2}\]

\[f(x)=\dfrac{\sqrt{x-\sin(x)}}{3}\]

Gráficas y cómo representar funciones matemáticas

Las gráficas nos pueden ayudar a representar las funciones visualmente. Cada función tiene asociada una gráfica, aunque no siempre podemos representarlas si involucran más de tres dimensiones. Hay muchos factores que pueden alterar la forma de una gráfica, algunos de los cuales son:

  • Dominios con valores negativos o positivos.

  • La forma de la función (la ecuación que la representa).

  • Discontinuidades.

Gráficas de polinomios

Los polinomios son expresiones que contienen variables elevadas a potencias positivas y enteras multiplicadas por una constante (distinta para cada término). Los polinomios pueden ser tremendamente complejos o bastante simples. Dos ejemplos de polinomios son \(4x^3+3x^2+2x+x\) y \(2x+3\). Estas expresiones se pueden representar gráficamente para intuir su comportamiento.

Las gráficas dependen de la potencia más grande del polinomio y, normalmente, en tus clases encontrarás gráficas de parábolas (polinomios cuadráticos) o gráficas de hipérbolas (polinomios cúbicos).

Funciones polinomio StudySmarterFig. 2. Gráfica de un polinomio de grado \(6\).

Funciones - Puntos clave

  • Un mapeo o aplicación es la generalización de una función. Toma datos de entrada y genera datos de salida, estos datos no tienen por qué ser únicos para cada dato de entrada.
  • Las funciones toman un dato de entrada y generan un único dato de salida por cada dato de entrada.
  • Se pueden construir funciones usando términos algebraicos.
  • Dos tipos especiales de funciones son las funciones compuestas y funciones inversas.
  • El conjunto de datos de entrada en los que está definida una aplicación se llama dominio y el conjunto de datos de salida que genera el dominio se llama rango o imagen.
  • Algunas funciones comunes son las funciones exponenciales, logarítmicas y las irracionales.
  • Las funciones se pueden representar en gráficas que nos ayudan a entender su comportamiento.

Preguntas frecuentes sobre Funciones Matemáticas

Las funciones son relaciones matemáticas que toman un dato de entrada y generan un dato de salida. Las funciones poseen un dominio (datos de entrada) y un rango (datos de salida). Las relaciones matemáticas que son parte de las funciones son aritméticas (sumas, restas, multiplicaciones, divisiones), funciones trigonométricas (seno, coseno, tangente), entre otras. 

Algunas funciones matemáticas son:

  • Funciones inversas
  • Compuestas
  • Racionales
  • Irracionales
  • Logaritmicas
  • Exponenciales
  • Polinomios

La funciones exponenciales son funciones donde el crecimiento o decrecimiento de la función sigue una tendencia exponencial.

Los logaritmos son la función inversa de los exponenciales. El logaritmo natural, por ejemplo, es el inverso de la función exponencial.

Una función irracional es aquella que posee una raíz que no se puede simplificar, mientras que una función racional es aquella que se compone de una división de dos polinomios.

Cuestionario final de Funciones Matemáticas

Pregunta

¿Qué es una función?

Mostrar respuesta

Answer

Las funciones son las relaciones entre dos números

Show question

Pregunta

Menciona dos tipos de funciones matemáticas.

Mostrar respuesta

Answer

Funciones inversas y funciones compuestas.

Show question

Pregunta

¿Qué mapeos pueden ser considerados funciones?

Mostrar respuesta

Answer

Mapeos de uno a uno (una x por una y) o de varios valores de x a uno de y..

Show question

Pregunta

¿Qué función resuelves primero en la siguiente función compuesta: \(f(g(x))\)?

Mostrar respuesta

Answer

\(g(x)\).

Show question

Pregunta

 ¿Cómo se muestra una función inversa?

Mostrar respuesta

Answer

\(f^{-1}(x)\)

Show question

Pregunta

Dado \(f=2x+x^2\) y \(g(x)=3x\), encuentra \(f(g(5))\).

Mostrar respuesta

Answer

\(f(g(5))=255\)

Show question

Pregunta

 Dado  \(f=2x\) y \(g(x)=4x^2\), encuentra \(f(g(2))\).

Mostrar respuesta

Answer

\(f(g(2))=64\)

Show question

Pregunta

Dado  \(f=2x\) y \(g(x)=4x^3\), encuentra \(g(f(2))\).

Mostrar respuesta

Answer

\(g(f(2))=256\).

Show question

Pregunta

Dado  \(f=4x-x\) y \(g(x)=3x\), encuentra \(f(g(6))\).

Mostrar respuesta

Answer

\(f(g(6))=54\).

Show question

Pregunta

 Dado  \(f=4x-x\) y \(g(x)=3x\), encuentra \(g(f(6))\).

Mostrar respuesta

Answer

 Dado  \(f=4x-x\) y \(g(x)=3x\), encuentra \(g(f(6))\).

Show question

Pregunta

 ¿Qué es el dominio de una función?


Mostrar respuesta

Answer

El conjunto de valores de entrada donde está definida la función o mapeo.

Show question

Pregunta

¿Qué es el rango de la función?

Mostrar respuesta

Answer

El conjunto de valores de salida de la función o mapeo como resultado de la actuación sobre el dominio.

Show question

Pregunta

¿Cuál de las siguientes no es una función común? 

Mostrar respuesta

Answer

Exponencial 

Show question

Pregunta

Un mapeo de uno a uno es una función. ¿Verdadero o falso?


Mostrar respuesta

Answer

Verdadero, ya que por cada entrada hay una salida.

Show question

Pregunta

Si en un mapeo a un valor de \(x\) le corresponden dos valores de y al mismo tiempo, este es una función. ¿Verdadero o falso?


Mostrar respuesta

Answer

Falso, ya que por un valor de entrada hay dos de salida y una función debe ser uno o uno ó varios a uno. 

Show question

Pregunta

¿Cuál es la forma general de una función polinómica?

Mostrar respuesta

Answer

\(f(x)=ax^n+bx^{n-1}+ cx^{n-2}...zx^{n-n}\).


Show question

Pregunta

¿Los términos de un polinomio se escriben en orden descendente o ascendente?

Mostrar respuesta

Answer

Descendente.

Show question

Pregunta

¿Es \(2x-3\) un polinomio?

Mostrar respuesta

Answer

Sí, en concreto, es un binomio.

Show question

Pregunta

¿Es \(2x^2+13x+15\) un polinomio?

Mostrar respuesta

Answer

Sí, porque sigue la forma polinómica.

Show question

Pregunta

¿Que es una funcion?

Mostrar respuesta

Answer

Las funciones son expresiones matematicas que toman un valor x como entrada y producen un valor y de salida. Generalmente las mas sencillas usan el valor \(y\) para la variable dependiente y \(x\) para la variable independiente.

Show question

Pregunta

¿Cuales son las graficas de las funcionas mas habituales?

Mostrar respuesta

Answer

Las graficas de la funciones mas habituales incluyen:

  • la recta.
  • el valor absoluto.
  • la parabola.
  • la funcion cubica. 

Estas son las funciones mas habituales que veras en tus cursos.

Show question

Pregunta

¿Que tipo de test usas para detemrinnar que una grafica es una funcion?

Mostrar respuesta

Answer

El test de la linea vertical

Show question

Pregunta

¿Que tipo de test usas para determinar que una funcion es uno a uno?

Mostrar respuesta

Answer

El test de la recta horizontal.

Show question

Pregunta

Si \(f(x)=x+1\) y \(g(x)=x+1\), encuentra \(f(g(2))\).

Mostrar respuesta

Answer

\(f(g(2))=4\).

Show question

Pregunta

Si \(f(x)=3x+5\) y \(g(x)=5x-2\), encuentra \(f(g(6))\).

Mostrar respuesta

Answer

\(f(g(6))=89\).

Show question

Pregunta

Si \(f(x)=7x+7\) y \(g(x)=x/7\), encuentra \(g(f(4))\).

Mostrar respuesta

Answer

\(f(g(4))=11\).

Show question

Pregunta

Si \(g(x)=x-3\) y \(g(x)=4x+5\), encuentra \(f(g(8))\).

Mostrar respuesta

Answer

\(f(g(8))=34\).

Show question

Pregunta

Si \(f(x)=7x-2\) y \(g(x)=\sin(x)\), encuentra \(f(g(x))\).

Mostrar respuesta

Answer

\(f(g(x))=7\sin(x)-2\).

Show question

Pregunta

¿Es \(f(g(x))\) lo mismo que \(g(f(x))\) si \(f(x)=x^{1/2}\) y \(g(x)=x^2\)?

Mostrar respuesta

Answer

Sí, porque una función es la inversa de la otra.

Show question

Pregunta

¿Es \(f(g(x))\) lo mismo que \(g(f(x))\) si \(f(x)=\ln(x)\) y \(g(x)=e^x\)?

Mostrar respuesta

Answer

Sí, porque una función es la inversa de la otra.

Show question

Pregunta

¿Siempre es igual \(f(g(x))\) y \(g(f(x))\)?

Mostrar respuesta

Answer

No, sólo son iguales si las funciones son inversas entre sí.

Show question

Pregunta

¿Cuál es el dominio de \(g(f(x))\), si el dominio de \(f(x)\) es \([2,3]\) y el de \(g(x)\) es \([2,4]\)?

Mostrar respuesta

Answer

El dominio es \([2,3]\).

Show question

Pregunta

¿Cuál es el dominio de \(g(f(x))\), si el dominio de \(f(x)\) es \([-10,2]\) y el de \(g(x)\) es \([1,4]\)?

Mostrar respuesta

Answer

El dominio es \([1,2]\).

Show question

Pregunta

Es el dominio de una función compuesta:

Mostrar respuesta

Answer

La composición de los dominios.

Show question

Pregunta

¿Se podría decir que en \(f(g(x))\) el rango de \(g(x)\) es el dominio de \(y\)? ¿Por qué?

Mostrar respuesta

Answer

Sí, porque el dominio de la función da un rango o valor de salida y este será el dominio de la siguiente función.

Show question

Pregunta

¿Es \(f(g(x))\) lo mismo que \(g(f(x))\) si \(f(x)=\log(x)\) y \(g(x)=10^x\)?

Mostrar respuesta

Answer

Sí, porque una función es la inversa de la otra.

Show question

Pregunta

¿Es \(f(g(x))\) lo mismo que \(g(f(x))\) si \(f(x)=2x\) y \(g(x)=x/4\)?

Mostrar respuesta

Answer

No, porque una función no es la inversa de la otra.

Show question

Pregunta

Si \(f(x)\) es una función inversa de \(g(x)\), la composición \(f(g(x))\) es:

Mostrar respuesta

Answer

\(x\).

Show question

Pregunta

 ¿Cuáles son los tipos de transformación en una gráfica?

Mostrar respuesta

Answer

Estiramiento, reflexiones y traslaciones.

Show question

Pregunta

Todas las funciones pueden ser transformadas. ¿Cierto o falso?

Mostrar respuesta

Answer

Cierto.

Show question

Pregunta

¿En qué dirección en la gráfica se espera que cambie durante una traslación hacia el lado negativo de las x?

Mostrar respuesta

Answer

El movimiento es hacia la izquierda.

Show question

Pregunta

¿En qué dirección en la gráfica se espera traslado cuando se mueve hacia el lado positivo de las y?

Mostrar respuesta

Answer

El movimiento es ascendente.

Show question

Pregunta

¿En qué dirección en la gráfica se espera que haya movimiento cuando se traslada horizontalmente por un valor de 0?

Mostrar respuesta

Answer

Ningún movimiento.

Show question

Pregunta

Si la función g(x) es igual a x2, ¿cuál es la traslación, si se mueve por el vector (-a,b)?

Mostrar respuesta

Answer

g(x)=(x+2)2+b.

Show question

Pregunta

Si la función f(x) es igual a x2, ¿cuál es la traslación, si se mueve por el vector (2,1)?

Mostrar respuesta

Answer

x2-4x+5.

Show question

Pregunta

Cuando la función g(x) es x-1 y se traslada por el vector (1,-1), ¿cuál es la nueva función?

Mostrar respuesta

Answer

x-3

Show question

Pregunta

Si la función y=f(x) se estrecha verticalmente por 3, ¿cuál es la función resultante?

Mostrar respuesta

Answer

y=3f(x).

Show question

Pregunta

Si la función y=f(3x) se estrecha verticalmente por 3, ¿cuál es la función resultante?

Mostrar respuesta

Answer

y=f(x).

Show question

Pregunta

La función y=h(x) tiene un punto donde se cambia de dirección en las coordenadas (4,-3) y (6,1). Si la función fue estirada creando una nueva función y=2h(x), encuentra las nueva coordenadas.

Mostrar respuesta

Answer

(4,-6) y (6,2).

Show question

Pregunta

La función y=g(x) tiene puntos de flexión en las coordenadas (2,-5) y (4,1). Si al estrecharla se produce una función y=g(0.5x), encuentra las nuevas coordenadas de estos puntos.

Mostrar respuesta

Answer

(4,-5) y (8,1).

Show question

60%

de los usuarios no aprueban el cuestionario de Funciones Matemáticas... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.