Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|
Radicales

Aunque lo parezca por el nombre, los números radicales no son nada extremistas ni fundamentalistas. Se les llama así porque proceden de una raíz. Como seguramente ya sepas, la raíz es la función inversa de la potencia.No vamos a hablar de movimientos extremistas pero seguro que también estás interesado en los números radicales por lo que, ¡sigue leyendo!Los radicales, o…

Content verified by subject matter experts
Free StudySmarter App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Radicales

Guarda la explicación ya y léela cuando tengas tiempo.

Guardar
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Aunque lo parezca por el nombre, los números radicales no son nada extremistas ni fundamentalistas. Se les llama así porque proceden de una raíz. Como seguramente ya sepas, la raíz es la función inversa de la potencia.

No vamos a hablar de movimientos extremistas pero seguro que también estás interesado en los números radicales por lo que, ¡sigue leyendo!

¿Qué son los radicales?

Los radicales, o raíces, son expresiones que contienen una raíz cuadrada, una raíz cúbica u otras raíces. Cuando el resultado del cálculo de una raíz es un número irracional con infinitos decimales, se deja en forma de raíz para que sea una representación exacta. Por ejemplo,\(\sqrt{2}\), \(\sqrt[3]{6.7}\), \(\sqrt{7}\), \(\sqrt[5]{21}\), \(\sqrt{10}\).

Recuerda que un número irracional es un tipo de número que no se puede representar como una fracción.

Propiedades de los radicales

Cuando trabajes con radicales, hay diversas propiedades y reglas, como las propiedades de multiplicación, división o exponenciación. Estas nos permiten hacer operaciones con radicales.

Operaciones con radicales

Multiplicación de radicales: siempre que el índice de las raíces sea el mismo, puedes multiplicar raíces con diferentes números dentro de la raíz. Para esto, simplemente debes combinarlos en una raíz y multiplicar los números dentro de ella.

Del mismo modo, se puede dividir una raíz en raíces separadas utilizando factores: \(\sqrt{c}=\sqrt{a \cdot b}= \sqrt{a} \sqrt{b} \)

\[\sqrt{6}=\sqrt{2} \sqrt{3}\]

Si los radicales son raíces de distinto orden también pueden multiplicarse. Para multiplicar raices de distinto orden, estas deben tener un minimo comun multiplicador.

Multiplica \(\sqrt[2]{3}\) y \(\sqrt[4]{4}\).

Aquí \(\sqrt[4]{4}\) puede ser expresado como:

\[\sqrt[2*2]{4}=\left( (4)^{\frac{1}{2}} \right)^{\frac{1}{2}} = \left(\sqrt{4}\right)^{\frac{1}{2}} \]

Esto sería igual a:

\[\left(\sqrt{4}\right)^{\frac{1}{2}}=2^{\frac{1}{2}}=\sqrt{2} \]

Por lo tanto la multiplicación sería:

\[\sqrt[2]{3} \cdot \sqrt[2]{2} =\sqrt[2]{6}\]

División de radicales: del mismo modo, siempre que el índice de las raíces sea el mismo, puedes dividir radicales con diferentes números dentro de la raíz. Para ello, los combinas en una raíz y divides los números dentro de la raíz:

\[\dfrac{\sqrt[a]{A}}{\sqrt[a]{B}}=\sqrt[a]{\dfrac{A}{B}}\]

\[\dfrac{\sqrt[3]{9}}{\sqrt[3]{3}}=\sqrt[3]{\dfrac{9}{3}}=\sqrt[3]{3}\]

Multiplicar una raíz cuadrada por sí misma: si se multiplica la raíz de un número por sí misma, se obtiene el valor dentro de la raíz:

\[\sqrt[a]{A} \cdot \sqrt[a]{A}=A\]

\[\sqrt[2]{4} \cdot \sqrt[2]{4}=4\]

Multiplicación de un número por una raíz: al multiplicar un número por una raíz, el orden de los factores no importa, y el resultado debe ser el número seguido de la raíz:

\[A \cdot \sqrt[a]{B} = A(\sqrt[a]{B})\]

\[7 \cdot \sqrt[2]{3} = 7(\sqrt[2]{3})\]

Suma o resta de radicales: para sumar o restar radicales, el número dentro de las raíces debe ser el mismo. Entonces, se suman o restan los números que están fuera de la raíz:

\[A\sqrt[a]{m}+B\sqrt[a]{m} =(A+B) \sqrt[a]{m} \]

\[2\sqrt[2]{4}+3\sqrt[2]{4} =(2+3) \sqrt[2]{4}=5\sqrt[2]{4} \]

Para sumar o restar radicales, es posible que tengas que simplificarlos, primero, para encontrar términos similares.

Suma:

\[\sqrt{2}+\sqrt{8}\]

No puedes sumarlos directamente, pero puedes trabajar la expresión para poder hacerlo.

\[\sqrt[2]{8}=\sqrt[2]{4} \cdot \sqrt[2]{2}\]

Entonces, puedes resolver:

\[\sqrt[2]{8} \cdot \sqrt[2]{2}=(\sqrt[2]{4} \cdot \sqrt[2]{2}) + \sqrt[2]{2}=2\sqrt[2]{2}+\sqrt[2]{2}=3\sqrt{2}\]

Multiplicación de paréntesis que contienen raíces: para hacer esta operación, cada término del primer paréntesis debe multiplicarse por cada término del segundo paréntesis. Luego, se pueden combinar los términos iguales:

\[(2+\sqrt{3})\cdot 4= (4 \cdot 2)+ (4 \cdot \sqrt{3} )\]

Simplificación de radicales

Para simplificar radicales, es necesario recordar las raíces cuadradas de los cuadrados perfectos o cubos perfectos también.

\[\sqrt[3]{27}; 3^3=27 \rightarrow \sqrt[3]{3^3}=3\]

\[\sqrt[2]{81}; 9^2=81 \rightarrow \sqrt[2]{9^2}=9\]

Suma de radicales

Los radicales también se pueden sumar. Para ello, siempre debes hacer primero la operación que indica la raíz la suma de radicales no se puede simplificar en estos casos. Una regla que se cumple en la suma de raíces es la que se muestra a continuación:

\[a\sqrt{A}+b\sqrt{A}=(a+b)\sqrt{A}\]

Veamos esto en un ejemplo.

\[2\sqrt{5}+5\sqrt{5}=(2+5)\sqrt{5}\]

entonces:

\[(2+5)\sqrt{5}=7\sqrt{5}\]

Racionalización del denominador de fracciones que contienen raíces

El propósito de racionalizar el denominador de las fracciones que contienen raíces es eliminar las raíces del denominador. La estrategia para hacerlo es multiplicar el numerador y el denominador por la raíz.

\[ \dfrac{\sqrt{A}}{a} \cdot \dfrac{\sqrt{A}}{\sqrt{A}}=\dfrac{A}{a\sqrt{A}}\]

Racionaliza el denominador en la siguiente expresión:

\[ \dfrac{\sqrt{2}}{6} \cdot \dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{2}{6\sqrt{2}}\]

La expresión no se puede simplificar más.

Asimismo, si el denominador contiene una raíz y un número racional, hay que multiplicar el numerador y el denominador por la expresión del denominador, pero con el signo del medio cambiado; es decir, si es (+) cambiarlo por (-), y viceversa. Esta expresión se llama el conjugado.

\[\dfrac{2+\sqrt{3}}{2-\sqrt{4}}\]

el conjugado sería:

\[\dfrac{2+\sqrt{4}}{2+\sqrt{4}}\]

Por lo tanto la simplificación sería multiplicar el conjugado por la fracción original.

\[\dfrac{2+\sqrt{3}}{2-\sqrt{4}} \cdot \dfrac{2+\sqrt{4}}{2+\sqrt{4}}\]

Radicales - Puntos clave

  • Las raíces o radicales son expresiones que contienen una raíz cuadrada, una raíz cúbica u otras raíces que dan como resultado un número irracional, con infinitos decimales. Se dejan en su forma radical para representarlas con mayor precisión.
  • Para multiplicar y dividir radicales con números diferentes dentro de la raíz, el índice de las raíces debe ser el mismo.
  • Para sumar o restar radicales, el número dentro de las raíces debe ser el mismo.
  • Para sumar o restar radicales, es posible que haya que simplificarlas primero.
  • El propósito de racionalizar el denominador de las fracciones que contienen raíces es eliminar las raíces del denominador.

Preguntas frecuentes sobre Radicales

Los radicales tienen muchas operaciones. Los radicales pueden sumarse, restarse, multiplicarse, dividirse o multiplicarse por una constante.

Los radicales o raíces tienen la siguientes reglas o propipedades:

  • Suma: √a+√b ≠ √(a+b), √2+√2 ≠ √(2+2)
  • Resta: √a-√b ≠ √(a-b), √3-√2 ≠ √(3-2)
  • Multiplicación: √a x √b = √(axb), √4 x √5 = √(4x5)
  • Division: √a/√b ≠ √(a/b). √2/√7 ≠ √(2/7)
    Multiplicación por escalar: ax√b ≠ a√b, 3x√4 ≠ 3√4


Para sumar radicales es preciso primero calcular las raíces y después sumar los resultados pues normalmente, no se puede simplificar la suma de radicales.


  • Si son del mismo tipo, los radicales se dividen como dos raíces cuadradas: √a/√b=√(a/b).
  • Si no son del mismo tipo, se recomienda hacer la raíz primero y después dividir los resultados.
  • Si las raíces son múltiplos de la otra, pueden simplificarse.

La multiplicación de radicales en general se hace de las siguientes formas:

  • Si son de mismo tipo: √a x √b =√(axb)
  • Si son de tipos distintos, se hace primero la raíz y después se multiplican.
  • Si son múltiplos, se pueden simplificar.

Cuestionario final de Radicales

Radicales Quiz - Teste dein Wissen

Pregunta

¿Qué son las raíces?

Mostrar respuesta

Answer

Las raíces son expresiones que contienen una raíz cuadrada, una raíz cúbica u otras raíces. Son raíces de números que dan como resultado un número irracional, con infinitos decimales. Por lo tanto, se dejan en su forma de raíz para representarlas más exactamente. Por ejemplo, √2, √3, √5, √7, 2√2

Show question

Pregunta

¿Cómo sumas y restas raíces?

Mostrar respuesta

Answer

Para sumar o restar términos con raíces, los términos en las raíces deben ser los mismos:
a√x+b√x=(a+b)√x.

Show question

Pregunta

¿Cómo multiplicas y divides raíces?

Mostrar respuesta

Answer

Si las raíces poseen el mismo valor (índice), solo se multiplican o dividen los valores y se aplica la raíz original.
Si no, se hace primero la operación; y, después, se divide y multiplica.

Show question

Pregunta

¿Cuál es el resultado de multiplicar una raíz por sí misma?

Mostrar respuesta

Answer

El valor dentro de la raiz.

Show question

Pregunta

¿Cómo multiplicas brackets que contienen raíces?

Mostrar respuesta

Answer

Cada termino dentro de un bracket debe ser multiplicado por cada término en el otro bracket.

Show question

Pregunta

¿Cómo simplificar raíces?

Mostrar respuesta

Answer

  • Escribir el número dentro de la raíz como una multiplicación de dos factores, uno de ellos debe ser un número con una raíz exacta.

  • Dividir los factores en dos raíces.

  • Simplificar los términos.

  • Denotar la multiplicación.

Show question

Pregunta

¿Cómo racionalizas raíces?

Mostrar respuesta

Answer

  • Si el denominador solo contiene una raíz: se multiplica el numerador y el denominador por la raíz.

  • Si el denominador contiene una raíz y un número racional: en este caso, hay que multiplicar el numerador y el denominador por la expresión del denominador, pero con el signo del medio cambiado; es decir: si es (+), cambiarlo por ( -), y viceversa. Esta expresión se llama el conjugado. 

Show question

Pregunta

Simplifica \(\sqrt{20}\).

Mostrar respuesta

Answer

\(\sqrt{20}=\sqrt{4(5)}=\sqrt{5}\sqrt{5}=2\sqrt{5}\).

Show question

Pregunta

Simplifica \(\sqrt{300}\).

Mostrar respuesta

Answer

\(\sqrt{300}=\sqrt{100(3)}=\sqrt{100}\sqrt{3}=12\sqrt{3}\).

Show question

Pregunta

Simplifica \(\sqrt{234}\).

Mostrar respuesta

Answer

 \(\sqrt{234}=\sqrt{81(3)}=\sqrt{81}\sqrt{3}=9\sqrt{3}\).


Show question

Pregunta

Simplifica \(\sqrt{98}\).

Mostrar respuesta

Answer

\(\sqrt{98}=\sqrt{49(2)}=\sqrt{49}\sqrt{2}=7\sqrt{2}\).

Show question

Pregunta

Simplifica \(\sqrt{32}\).

Mostrar respuesta

Answer

\(\sqrt{32}=\sqrt{16(2)}=\sqrt{16}\sqrt{2}=4\sqrt{2}\).

Show question

Pregunta

Racionaliza el denominador de la expresión \(\dfrac{4}{\sqrt{2}}\).

Mostrar respuesta

Answer

\(\dfrac{4}{\sqrt{2}} \bullet \dfrac{\sqrt{2}}{\sqrt{2}} = \dfrac{4\sqrt{2}}{\sqrt{2}\sqrt{2}}= \dfrac{\sqrt{32}}{2} \)

Show question

Pregunta

Racionaliza el denominador de la expresión \(\dfrac{\sqrt{5}+3}{\sqrt{5}-3} \).

Mostrar respuesta

Answer

\( \dfrac{\sqrt{5}+3}{\sqrt{5}-2} \bullet \dfrac{\sqrt{5}+2}{\sqrt{5}+2} = \dfrac{11+5\sqrt{5}}{1}=11+5\sqrt{5} \).


Show question

Pregunta

¿Se puede resolver \( \sqrt{2} + \sqrt{3}\)?

Mostrar respuesta

Answer

Se puede sumar, pero no simplificar.

Show question

60%

de los usuarios no aprueban el cuestionario de Radicales... ¿Lo conseguirás tú?

Empezar cuestionario

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free matematicas cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Empieza a aprender con StudySmarter, la única app de estudio que necesitas.

Regístrate gratis
Illustration