La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
Si estás leyendo esto, seguramente ya dominas la integración de funciones elementales como \(f(x)=x^2\) o, incluso, \(f(x)=\dfrac{1}{x}\). Sin embargo, hay otras funciones más complejas que requieren métodos de integración elaborados. Este es el caso de las funciones racionales como, por ejemplo, \(f(x)=\dfrac{x+1}{x^2-2}\). Estas funciones no se pueden integrar de manera inmediata; por eso, aquí te enseñaremos el mejor método para…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenSi estás leyendo esto, seguramente ya dominas la integración de funciones elementales como \(f(x)=x^2\) o, incluso, \(f(x)=\dfrac{1}{x}\). Sin embargo, hay otras funciones más complejas que requieren métodos de integración elaborados. Este es el caso de las funciones racionales como, por ejemplo, \(f(x)=\dfrac{x+1}{x^2-2}\). Estas funciones no se pueden integrar de manera inmediata; por eso, aquí te enseñaremos el mejor método para llegar a la solución.
Partimos de una función racional del tipo:
$$f(x)=\dfrac{P(x)}{Q(x)}$$
Este tipo de funciones tienen ciertas características que puedes ver en nuestro artículo sobre fracciones algebraicas.
Lo primero que debemos considerar es el grado de cada polinomio. Si el grado de \(P(x)\) es menor que el grado de \(Q(x)\), la función \(f(x)\) se puede escribir como una suma de fracciones simples. El polinomio \(Q(x)\) puede tener varias raíces, donde se cumple:
Si el polinomio \(Q(x)\) tiene raíces reales \(r\) de multiplicidad \(n\), se pueden escribir como fracciones del tipo: $$\dfrac{A_1}{x-r}+\dfrac{A_2}{(x-r)^2}+...+\dfrac{A_n}{(x-r)^n}$$
Si el polinomio \(Q(x)\) tiene raíces complejas conjugadas de multiplicidad \(m\), se pueden escribir \(m\) fracciones del tipo: $$\dfrac{B_1x+C_1}{x^2+ax+b}+\dfrac{B_2x+C_2}{(x^2+ax+b)^2}+...+\dfrac{B_m x+C_m}{(x^2+ax+b)^m}$$
En el último caso, el polinomio \(x^2+ax+b\) es el polinomio asociado la raíz compleja doble conjugada.
Descompón en fracciones simples la función:
$$f(x)=\dfrac{3x-2}{x^2-x-2}$$
Solución:
En primer lugar, observamos que el grado del numerador es menor que el del denominador. Por tanto, podemos convertir este cociente de polinomios en fracciones simples.
Factorizamos el denominador usando la fórmula de Cardano, y llegamos a:
$$f(x)=\dfrac{3x-2}{(x-2)(x+1)}$$
Como las raíces del denominador son dos raíces reales, distintas y cada una de multiplicidad uno, podemos separar este cociente en dos fracciones simples como:
$$\dfrac{3x-2}{(x-2)(x+1)}=\dfrac{A}{x-2}+\dfrac{B}{x+1}$$
Ahora, operamos esas dos nuevas fracciones para obtener un solo cociente:
$$\dfrac{3x-2}{(x-2)(x+1)}=\dfrac{A(x+1)+B(x-2)}{(x-2)(x+1)}$$
Seguimos desarrollando el numerador:
$$\dfrac{3x-2}{(x-2)(x+1)}=\dfrac{Ax+A+Bx-2B}{(x-2)(x+1)}$$
Como los dos denominadores son iguales, podemos eliminarlos:
$$3x-2=(A+B)x+(A-2B)$$
Con esto, podemos crear dos ecuaciones en función de los coeficientes de la \(x\), que tienen que ser igual en los dos lados de la ecuación; y lo mismo para los términos independientes:
$$\left\{\begin{array}\, 3=A+B\\-2=A-2B\end{array}\right.$$
Resolviendo este sistema, llegamos a:
$$A=\dfrac{4}{3}$$
$$B=\dfrac{5}{3}$$
Por tanto, podemos dividir la función inicial en dos fracciones simples como:
$$f(x)=\dfrac{3x-2}{(x-2)(x+1)}=\dfrac{\frac{4}{3}}{x-2}+\dfrac{\frac{5}{3}}{x+1}$$
En el caso en el que el grado del numerador sea mayor que el grado del denominador, primero debemos dividir los dos polinomios. De este modo, obtendremos un polinomio y una fracción en la que ya el grado del denominador sea mayor que el grado del numerador.
$$\dfrac{P(x)}{Q(x)}=C(x)+\dfrac{R(x)}{Q(x)}$$
Todo lo anterior es la base de la integración de funciones racionales, cuando estas son suficientemente complejas. De este modo, podemos llegar a varios casos, dependiendo del número y tipo de raíces que tenga el polinomio \(Q(x)\).
Lo más sencillo que puede ocurrir es que el polinomio del denominador solo tenga raíces reales. En ese caso, este polinomio se pueda expresar como:
$$Q(x)=(x-r_1)(x-r_2)...(x-r_n)$$
Sin embargo, se pueden dar dos casos:
Que todas las raíces reales sean distintas entre sí.
Que algunas de las raíces reales sean iguales.
Si al factorizar el polinomio \(Q(x)\), vemos que solo tiene raíces reales y, además, todas son distintas, estamos ante el caso más sencillo de descomposición en fracciones parciales o simples. En este caso, tenemos que descomponer la función racional en tantas fracciones simples como raíces tenga el denominador. La integración de estas fracciones será del tipo:
$$\int \dfrac{a}{x-b}dx=a\ln(x-b)+c$$
Ten en cuenta que si la variable \(x\) tiene algún coeficiente, se puede sacar este coeficiente como factor común fuera de la integral.
Calcula la siguiente integral:
$$\int \dfrac{2x}{(x+2)(x-2)}dx$$
Solución:
En primer lugar, observamos el grado de los polinomios que forman la función racional. El grado del numerador es de 1 y el del denominador es de 2 (está descompuesto y tiene 2 factores). Por tanto, podemos aplicar la descomposición en fracciones simples:
$$\dfrac{2x}{(x+2)(x-2)}=\dfrac{A}{x+2}+\dfrac{B}{x-2}$$
$$\dfrac{2x}{(x+2)(x-2)}=\dfrac{A(x-2)+B(x+2)}{(x+2)(x-2)}$$
Luego, eliminamos los denominadores y desarrollamos el numerador:
$$2x=Ax-2A+Bx+2B$$
Ahora, ya Podemos crear el sistema:
$$\left\{\begin{array}\,2=A+B\\0=-2A+2B\end{array}\right.$$
Este sistema es muy sencillo y su solución es:
$$A=1$$
$$B=1$$
De este modo, podemos separar la función racional en dos fracciones simples; por lo que la integral queda como:
$$\int \left(\dfrac{1}{x+2}+\dfrac{1}{x-2}\right)dx$$
Esta integral se puede separar en dos, puesto que los términos están sumando y ambas son inmediatas:
$$\int \dfrac{1}{x+2}dx +\int \dfrac{1}{x-2}dx=\ln|x+2|+\ln|x-2|+c$$
Puede ocurrir que un polinomio tenga raíces reales dobles, triples, cuádruples, etc. Esto se conoce como la multiplicidad de la raíz.
Por ejemplo, el polinomio \(P(x)=(x+1)^3(x-2)\) tiene dos raíces distintas y una de ellas es de multiplicidad \(3\).
En estos casos, la descomposición en fracciones simples tendrá tantos términos como la suma de las multiplicidades de las raíces del polinomio. Es decir, en el ejemplo anterior, la función racional se descompondría en \(4\) fracciones simples (\(3\) por el término \((x+1)\) y 1 por el término \((x-2)\)).
Hagamos un ejercicio, para que lo entiendas mejor:
Calcula la siguiente integral:
$$\int \dfrac{3x-2}{(x+2)^2(x-1)}dx$$
Solución:
Puedes observar que el grado del numerador es menor que el grado del denominador, por lo que podemos descomponer esta función racional en fracciones simples.
Como vemos, una de las raíces es doble, esto implica que habrá una fracción simple más: una de las fracciones llevará el denominador elevado a la primera potencia y el otro a la segunda potencia. Si la multiplicidad de la raíz fuera de \(3\), habría una tercera fracción con denominador elevado a la tercera potencia y así sucesivamente.
En este caso, esto nos queda como:
$$\dfrac{3x-2}{(x+2)^2(x-1)}=\dfrac{A}{x+2}+\dfrac{B}{(x+2)^2}+\dfrac{C}{x-1}$$
El proceso siguiente es el mismo que en el caso anterior, pero ahora tenemos un sistema de tres ecuaciones con tres incógnitas:
$$3x-2=A(x+2)(x-1)+B(x-1)+C(x+2)^2$$
$$3x-2=Ax^2-Ax+2Ax-2A+Bx-B+Cx^2+4Cx+4C$$
Entonces, escribimos el sistema asociado:
$$\left\{\begin{align}&Ax^2+Cx^2=0\\&Ax+Bx+4Cx=3x\\&-2A-B+4C=-2\end{align}\right.$$
Ahora, resolvemos el sistema para obtener:
$$A=-\dfrac{1}{9}$$
$$B=\dfrac{8}{3}$$
$$C=\dfrac{1}{9}$$
Con esto podemos escribir la función racional como la suma de tres fracciones simples:
$$\dfrac{3x-2}{(x+2)^2(x-1)}=\dfrac{-1/9}{x+2}+\dfrac{8/3}{(x+2)^2}+\dfrac{1/9}{x-1}$$
Esto hace que podamos descomponer la integral en tres integrales más sencillas e inmediatas:
$$\begin{align} \int \dfrac{3x-2}{(x+2)^2(x-1)}dx&=\int \dfrac{-1/9}{x+2}dx+\int\dfrac{8/3}{(x+2)^2}dx+\int\dfrac{1/9}{x-1}dx=\\&=-\dfrac{1}{9}\ln|x+2|+\dfrac{8}{3}\int (x+2)^{-2}dx + \dfrac{1}{9}\ln|x-1|=\\&=-\dfrac{1}{9}\ln|x+2|+\dfrac{8}{3}\dfrac{(x+2)^{-1}}{-1}+ \dfrac{1}{9}\ln|x-1|=\\&=-\dfrac{1}{9}\ln|x+2|-\dfrac{8}{3(x+2)}+ \dfrac{1}{9}\ln|x-1|\end{align}$$
Cuando el polinomio tiene raíces complejas pueden darse los siguientes tres casos:
Puede ocurrir que el denominador sea un polinomio de segundo grado, pero que no tenga raíces reales; es decir, que tiene dos raíces complejas conjugadas. En estos casos, lo que tenemos que hacer es dividir la función racional para llegar a una fracción que se integre como un logaritmo y otra integral que se integre como una arcotangente.
Veamos:
Calcula la siguiente integral:
$$\int \dfrac{5x+4}{x^2+2x+2}dx$$
Solución:
Como siempre, comprobamos que el grado del denominador es mayor que el del numerador. En esta función, el denominador es un polinomio de segundo grado, pero que no tiene raíces reales; por tanto, no lo podemos factorizar.
Lo que hacemos ahora es sacar un factor común para dejar la \(x\) del numerador con un \(2\) —que es el coeficiente de la derivada del \(x^2\) del denominador—:
$$\int \dfrac{5x+4}{x^2+2x+2}dx=5\int \dfrac{x+4/5}{x^2+2x+2}dx=\dfrac{5}{2}\int \dfrac{2x+8/5}{x^2+2x+2}dx$$
Como puedes ver, hemos sacado el \(5\) como factor común del numerador, para luego multiplicar el numerador por \(2\) y así obtener el término \(2x\). Sin embargo, no se nos puede olvidar dividir, también, entre \(2\).
Después de esto, queremos separar en dos la fracción y que una de ellas tenga en el numerador la derivada del denominador; por tanto:
$$\begin{align}\dfrac{5}{2}\int \dfrac{2x+2-2/5}{x^2+2x+2}dx&=\dfrac{5}{2}\int \dfrac{2x+2}{x^2+2x+2}dx+\dfrac{5}{2}\int \dfrac{-2/5}{x^2+2x+2}dx=\\&=\dfrac{5}{2}\int \dfrac{2x+2}{x^2+2x+2}dx-\int\dfrac{1}{x^2+2x+2}dx\end{align}$$
Es fácil ver que la primera integral es una integral inmediata. Esta es un logaritmo neperiano del denominador, puesto que en el numerador está la derivada del denominador.
La segunda integral puede transformase para que sea la integral de la arcotangente \((\arctan(x))'=\dfrac{1}{1+x^2}\):
$$\begin{align}\dfrac{5}{2}\int \dfrac{2x+2}{x^2+2x+2}dx-\int\dfrac{1}{x^2+2x+2}dx&=\dfrac{5}{2}\ln|x^2+2x+2|-\int\dfrac{1}{(x^2+2x+1)+1}dx=\\&=\dfrac{5}{2}\ln|x^2+2x+2|-\int\dfrac{1}{1+(x+1)^2}dx=\\&=\dfrac{5}{2}\ln|x^2+2x+2|-\arctan(x+1)+c\end{align}$$
Cuando el polinomio del denominador \(Q(x)\) tiene o no raíces reales, pero al menos un par de raíces complejas conjugadas; por tanto, de multiplicidad 1. Por el teorema de descomposición en fracciones simples sabemos que podemos descomponer la función radical en cocientes más sencillos.
De este modo, para las raíces reales seguiremos las pautas de los casos anteriores. Para las dos raíces conjugadas del polinomio \(Q(x)\) recordamos que:
$$\dfrac{P(x)}{Q(x)}=\dfrac{Bx+C}{x^2+ax+b}$$
Calcula la siguiente integral:
$$\int \dfrac{6x+4}{(x+2)(x^2+2x+2)}dx$$
Solución:
Como en todos los casos, comprobamos que el grado del numerador es menor que el del denominador. En esta función racional, el denominador está formado por una raíz real y un polinomio de segundo grado, que proporciona dos raíces complejas conjugadas. Por tanto, podemos separar la función racional en dos fracciones simples:
$$\dfrac{6x+4}{(x+2)(x^2+2x+2)}=\dfrac{A}{x+2}+\dfrac{Bx+C}{x^2+2x+2}$$
Igual que en los casos anteriores, desarrollamos las fracciones e igualamos numeradores:
$$6x+4=A(x^2+2x+2)+(Bx+C)(x+2)$$
A partir de esto, llegamos al siguiente sistema de ecuaciones:
$$\left\{\begin{array}\, Ax^2+Bx^2=0\\2Ax+2Bx+Cx=6x\\2A+2C=4\end{array}\right.$$
Cuya solución es:
$$A=-4$$
$$B=4$$
$$C=6$$
Por tanto, la función racional inicial puede separarse como:
$$\dfrac{6x+4}{x^2+2x+2}=\dfrac{-4}{x+2}+\dfrac{4x+6}{x^2+2x+2}$$
Como puedes observar, el primer término se puede integrar de manera inmediata con un logaritmo. Con el segundo término solamente tenemos que aplicar el método que hemos visto anteriormente para convertir el denominador en la derivada del denominador:
$$\begin{align} \int \dfrac{6x+4}{(x+2)(x^2+2x+2)}dx&=\int \dfrac{-4}{x+2}dx+\int \dfrac{4x+6}{x^2+2x+2}dx=\\&=-4\ln|x+2|+2\int\dfrac{2x+3}{x^2+2x+2}dx=\\&=-4\ln|x+2|+2\int \left(\dfrac {2x+2}{x^2+2x+2}+\dfrac{1}{x^2+2x+2}\right)dx=\\&=-4\ln|x+2|+2\ln|x^2+2x+2|+2\int\dfrac{1}{1+(x+1)^2}dx=\\&=-4\ln|x+2|+2\ln|x^2+2x+2|+2\arctan(x+1)+c \end{align}$$
La integración de funciones racionales es un conjunto de métodos para integrar funciones que, de primeras no son inmediatas, pero que con ciertas operaciones podemos convertirlas en integrales inmediatas.
Para integrar una función racional por fracciones parciales, tenemos que separar la función racional en fracciones simples:
de los usuarios no aprueban el cuestionario de Integración de funciones racionales... ¿Lo conseguirás tú?
Empezar cuestionarioHow would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free matematicas cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Siempre preparado y a tiempo con planes de estudio individualizados.
Pon a prueba tus conocimientos con cuestionarios entretenidos.
Crea y encuentra fichas de repaso en tiempo récord.
Crea apuntes organizados más rápido que nunca.
Todos tus materiales de estudio en un solo lugar.
Sube todos los documentos que quieras y guárdalos online.
Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.
Fíjate objetivos de estudio y gana puntos al alcanzarlos.
Deja de procrastinar con nuestros recordatorios de estudio.
Gana puntos, desbloquea insignias y sube de nivel mientras estudias.
Cree tarjetas didácticas o flashcards de forma automática.
Crea apuntes y resúmenes organizados con nuestras plantillas.
Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.