Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|
Ángulos

¿Sabías que la precisión de los ángulos es fundamental para la estabilidad de estructuras físicas como los edificios? ¿Sabías también que midiendo los ángulos con precisión es como podemos determinar si nuestro tejado será capaz de evacuar el agua de lluvia?, ¿o que los instrumentos de un cohete deben medir con precisión el ángulo de inclinación para ajustar la potencia…

Content verified by subject matter experts
Free StudySmarter App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Ángulos

Guarda la explicación ya y léela cuando tengas tiempo.

Guardar
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

¿Sabías que la precisión de los ángulos es fundamental para la estabilidad de estructuras físicas como los edificios? ¿Sabías también que midiendo los ángulos con precisión es como podemos determinar si nuestro tejado será capaz de evacuar el agua de lluvia?, ¿o que los instrumentos de un cohete deben medir con precisión el ángulo de inclinación para ajustar la potencia de su empuje y así alcanzar la órbita?

Estos son solo algunos ejemplos de por qué los ángulos son tan importantes. En este artículo vamos a estudiar los ángulos y sus tipos.

¿Qué son los ángulos?

Un ángulo es una región cerrada, que está formada por dos o más segmentos de línea que comparten el mismo punto final.

  • Estos segmentos de línea se conocen como los lados del ángulo.
  • La región sobre el punto final compartido se conoce como el vértice del ángulo.

La siguiente figura muestra un ejemplo, donde \(\theta\) es el vértice del ángulo y las rectas que lo forman son \(\bar{OA}\) y \(\bar{OB}\).

Ángulos Ángulo agudo StuySmarterFig. 1: Ángulo con símbolo \(\theta\) entre dos rectas.

Notación de ángulos

Los ángulos se denotan por \(\angle\) o, comúnmente, por letras griegas.

Hay que conocer ciertas terminologías relacionadas con los ángulos para poder navegar sin problemas por esta sección. A continuación, encontrarás una lista de algunos términos útiles.

  • Vértice: es el punto de encuentro de las semirrectas que forman un ángulo. También se conoce como punto de giro.

  • Lado inicial: es la posición de la semirrecta donde comienza la rotación.

  • Lado terminal: es el destino de la semirrecta después de la rotación.

  • Ángulos positivos: son el resultado de una rotación en sentido contrario a las agujas del reloj.

  • Ángulos negativos: los ángulos negativos son el resultado de una rotación en el sentido de las agujas del reloj.

  • Posición estándar: se da en planos de coordenadas, cuando el lado inicial se encuentra a lo largo del eje x y su vértice está en el origen de un plano.

Los ángulos también se miden en grados. Esto lo veremos más adelante, pero te adelantaremos que ángulo de noventa grados se escribe \(90º\).

Nombrando un ángulo

El ángulo mostrado arriba (Figura 1) también puede llamarse \(\angle 0\), \(\angle AOB\) o \(\angle BOA\). En este usamos los puntos de cada segmento de línea, mientras incluimos el vértice del ángulo —que es siempre la letra del medio—.

Veamos un ejemplo de lo aprendido:

Nombra el ángulo \(x\) que se muestra en el siguiente diagrama.

Ángulos notación StudySmarterFig. 2: Ángulo \(x\) con semirrectas \(PD\) y \(PC\).

Solución:

  1. Utilizamos los lados del ángulo \(x\), que son \(PD\) y \(PC\).
  2. Usamos el punto común en el medio y los otros dos puntos de los lados.
  3. El angulo es \(\angle DPC\),

¿Cómo se miden los ángulos?

  • Un ángulo se mide en grados (o radianes), que describen su amplitud.

  • Los ángulos están comprendidos en el intervalo entre \(0º\) y \(360º\).

  • Un transportador es una herramienta que se utiliza para medir ángulos (Figura 3). Tiene la forma de un semicírculo y se divide en 180 secciones iguales.

Ángulos transportador StudySmarterFig. 3: Transportador para medir ángulos.

Por ejemplo:

Si deseas medir un ángulo de \(45º\), debes colocar el transportador sobre el ángulo, de forma que la línea recta de la parte inferior del transportador esté alineada con una de las rectas que definen el ángulo. Ademas, te debes asegurar de que el vértice del ángulo coincida con la cruz —que es un punto en la parte media inferior del transportador—.

  • Si el lado del ángulo alineado con el transportador apunta hacia la derecha, entonces nos fijamos en la línea de números situada en la parte exterior —que empieza por la derecha en \(0º\) y termina por la izquierda en \(180º\)—.

  • Si el lado del ángulo alineado con el transportador apunta hacia la izquierda, entonces nos fijamos en el valor indicado por la línea de números situada en el interior —que parte de la izquierda en \(0º\) y termina en la derecha en \(180º\)—.

Con las terminologías claramente definidas anteriormente, podemos describir con seguridad la medición de ángulos como la cantidad de rotación desde el lado inicial hasta el lado terminal.

Los ángulos se miden en diferentes unidades:

  • Grados, que usan el símbolo \(º\)

  • Radianes, que usan las unidades \(rad\).

Grados

Los grados son tales que la ocurrencia de una rotación completa se divide en 360 unidades. Esto significa que \(360º\) se producen en una rotación completa desde el lado inicial —ya sea en el sentido contrario a las agujas del reloj—, hasta el lado terminal —estando en la misma posición que el lado inicial—.

Una unidad de la rotación completa se considera como \(1º\). Los grados, como ya mencionamos, se denotan con "\(°\)". Así pues, la rotación completa se escribe adecuadamente como \(360º\), mientras que el de la unidad se escribe también como \(1º\).

Radianes

La medida del radián de un ángulo es el ángulo formado en términos de su radio alrededor de un círculo. Para ser más detallados, podemos tomar primero la longitud de un radio de una circunferencia; luego podemos medir la misma distancia en la circunferencia del círculo, y ese ángulo que se forma al proyectar los extremos del arco hacia el centro es un radián.

La medida del radián se denota por "\(rad\)". La rotación alrededor de un punto (ángulo completo) mide radianes. Esto significa que la circunferencia completa es un ángulo de \(2\pi\) radianes.

Medir ángulos en triángulos y rectas

Algo muy importante es que los ángulos se pueden medir, de manera indirecta, usando relaciones trigonométricas. Esto sucede en triángulos, en rectas y entre vectores. Hay tres casos simples:

  1. El ángulo entre dos lados de un triángulo se puede conocer usando las funciones seno, coseno o tangente —si se conocen al menos dos lados del triángulo—.

  2. El ángulo entre dos vectores se puede calcular si se sabe la magnitud y las coordenadas de los vectores.

  3. El ángulo entre dos rectas que se cruzan en un punto puede ser calculado cuando se trazan vectores sobre la recta.

Los últimos puntos son más complicados, pero puedes leer más sobre ellos en nuestro artículo Vectores o de La recta en el espacio.

¿Cuáles son los tipos de ángulos?

Existen diferentes tipos de ángulos, que se clasifican según sus características:

Ángulos rectos

Los ángulos rectos son los iguales a \(90º\). Los lados de un ángulo recto son perpendiculares entre sí. Normalmente, utilizamos dos líneas perpendiculares que conectan los dos lados del ángulo \(\angle AOB\), como se muestra en la fig. 4.

Ángulos agudos

Los ángulos agudos son más pequeños que un ángulo recto (que es de \(90º\)).

Puedes ver a continuación, un ejemplo de un ángulo agudo. Estos es \(\angle \theta\), donde este es menor que \(90º\), ya que los lados del ángulo no son perpendiculares.

 Ángulos ángulos agudo StudySmarterFig. 4: Rectas \(f\) y \(g\) definiendo un angulo agudo.

Ángulo llano

Los ángulos llanos tienen un valor de \(180º\) y están formados por una línea recta . El vértice del ángulo también forma un semicírculo, como se muestra en el ejemplo de la fig. 4, donde el ángulo \(\angle A\) está formado por un segmento de recta y es igual a \(180º\).

Si un ángulo crea un vértice de un círculo completo será igual al doble del ángulo de una línea recta, por lo tanto, medirá \(360º\). Esto se conoce como un ángulo completo.

Ángulos obtusos

Los ángulos obtusos son mayores que los rectos, pero menores que los llano. Por tanto, su medida en grados está entre \(90º\) y \(180º\).

Ángulos cóncavos

Los ángulos cóncavos son ángulos mayores que \(180º\), pero menores que \(360º\). Un ángulo cóncavo tiene un ángulo convexo en el otro lado que, cuando se suma, tiene como resultado \(360º\)

Se muestra un ejemplo en la Figura 5, donde \(\angle B\) es un ángulo cóncavo. También se puede identificar el convexo correspondiente.

Ángulos ángulo cóncavo StudySmarterFig. 5: Rectas \(f\) y \(g\) definiendo un ángulo cóncavo.

Ángulos en las formas geométricas

Los ángulos formados por diferentes formas geométricas tienen diferentes propiedades. Estos ángulos pueden ser: Triángulos.

  • Rectángulos.
  • Trapecios.
  • Cuadrados.
  • Paralelogramos.
  • Rombos.

A continuación, se indican las propiedades de los ángulos de cada tipo de forma:

  1. Los ángulos de cualquier tipo de triángulo suman 180º.

  2. Los ángulos de los cuadriláteros suman 360º.

Un cuadrilátero es cualquier forma bidimensional cerrada que tiene cuatro lados.

¿Qué son las relaciones entre ángulos?

Las relaciones entre ángulos se refieren a ls que se dan entre un par de ángulos. Dos relaciones importantes son las de los ángulos complementarios y los ángulos suplementarios.

Ángulos complementarios

Los ángulos complementarios son dos o más ángulos que forman un ángulo recto. Por lo tanto, los tienen una suma de \(90º\).

Ángulos, ángulos complementarios, StudySmarterFig. 6: Ángulos complementarios.

Ángulos suplementarios

Los ángulos se definen como suplementarios cuando forman una línea recta y tienen una suma de \(180º\).

Por ejemplo, en el diagrama siguiente, los ángulos \(\phi\) y \(\theta\) son ángulos suplementarios, ya que forman una línea recta.

Ángulos ángulos suplementarios StudySmarterFig. 7: Rectas \(g\), \(g\) y \(h\) definiendo ángulos suplementarios.

Ángulos - Puntos clave

  • Los ángulos en geometría son regiones cerradas que están formadas por dos o más segmentos de línea que comparten el mismo punto final.
  • Hay diferentes tipos de ángulos.
  • También hay varias relaciones entre un par de ángulos, que incluyen el suplementario, el complementario, el adyacente y el vertical.
  • Los ángulos se miden en grados o radianes.
  • Un ángulo está comprendido entre \(0º\) y \(360º\).

References

  1. Fig. 3: Transportador para medir ángulos (https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/TransportadorG2.svg/512px-TransportadorG2.svg.png) by Daniel U (https://commons.wikimedia.org/wiki/User:Dnu72) is licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).

Preguntas frecuentes sobre Ángulos

Un ángulo es una región cerrada que está formada por dos o más segmentos de línea que comparten el mismo punto final.


Los ángulos se pueden clasificar de acuerdo con su apertura; los hay:
Rectos, que son iguales a noventa grados.

  • Agudos, cuyo ángulo es menor que noventa grados.
  • Llanos, cuyo ángulo es ciento ochenta grados.
  • Obtusos, cuyo ángulo está entre noventa y ciento ochenta grados.


Un ángulo se mide usando un transportador o, si se saben las longitudes de los catetos del triángulo, se usa una relación trigonométrica como el seno, coseno o tangente.

Un ángulo es obtuso si su medida está dentro del intervalo entre 90 y 180 grados.

Los ángulos se definen como suplementarios cuando su suma da como resultado ciento ochenta grados.

Cuestionario final de Ángulos

Ángulos Quiz - Teste dein Wissen

Pregunta

¿Qué funciones se usan para conocer el ángulo en un triángulo rectángulo?

Mostrar respuesta

Answer

Seno, coseno y tangente.

Show question

Pregunta

¿Cuáles son las unidades de los radianes?

Mostrar respuesta

Answer

\(rad\).

Show question

Pregunta

¿Qué es un ángulo?

Mostrar respuesta

Answer

Un ángulo es una región cerrada que está formada por dos o más segmentos de línea que comparten el mismo punto final.

Show question

Pregunta

¿Qué unidades se usan para medir un ángulo?

Mostrar respuesta

Answer

Radianes y grados.

Show question

Pregunta

¿A cuánto es igual \(360º\) en radianes?

Mostrar respuesta

Answer

\(2\pi\).

Show question

Pregunta

¿Cuánto es \(180º\) en radianes?

Mostrar respuesta

Answer

\(\pi\).

Show question

Pregunta

¿Cuántos grados tiene una circunferencia completa?

Mostrar respuesta

Answer

\(360º\).

Show question

Pregunta

¿Qué es un ángulo recto?

Mostrar respuesta

Answer

Un ángulo con \(90º\).

Show question

Pregunta

Un ángulo es de \(90º\), ¿qué tipo de ángulo es?

Mostrar respuesta

Answer

Recto.

Show question

Pregunta

Si los ángulos \(A=35º\) y \(B=55º\) se suman, ¿qué tipo de ángulo es el resultante?

Mostrar respuesta

Answer

Un ángulo recto.

Show question

Pregunta

¿Cuántos grados mide un ángulo llano?

Mostrar respuesta

Answer

\(180º\).

Show question

Pregunta

¿Qué es un ángulo cóncavo?

Mostrar respuesta

Answer

Un ángulo con menos de \(360º\) y más de \(180º\).

Show question

Pregunta

El ángulo \(C\) mide \(180º\), ¿qué tipo de ángulo es?

Mostrar respuesta

Answer

Un ángulo llano.

Show question

Pregunta

Los ángulos \(C\) y \(B\) suman \(200º\), ¿qué tipo de ángulo es la suma?

Mostrar respuesta

Answer

Un ángulo concavo.

Show question

Pregunta

¿Qué es un vértice?

Mostrar respuesta

Answer

Es el punto de encuentro de las semirrectas que forman un ángulo. También se conoce como punto de giro.

Show question

60%

de los usuarios no aprueban el cuestionario de Ángulos... ¿Lo conseguirás tú?

Empezar cuestionario

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free matematicas cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Empieza a aprender con StudySmarter, la única app de estudio que necesitas.

Regístrate gratis
Illustration