LAL y LLL

¿Has pensado en hacerte la vida más fácil? ¿Quién no lo ha hecho, al menos en alguna ocasión, verdad? Muchas veces, facilitarte la vida sólo significa reducir una acción a técnicas rápidas y fáciles de recordar, y aprenderlas.

Pruéablo tú mismo

Millones de tarjetas didácticas para ayudarte a sobresalir en tus estudios.

Regístrate gratis
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuándo utilizas SSS y SAS?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan tres triángulos. Los lados del primer triángulo son todos iguales a los lados respectivos del segundo triángulo. Dos lados y el ángulo intermedio del tercer triángulo son iguales a los dos lados y al ángulo respectivos del segundo triángulo. Marca todas las afirmaciones que sean correctas:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan dos triángulos rectángulos. Los dos catetos del primer triángulo rectángulo son iguales a los del segundo triángulo. Marca todas las afirmaciones que sean correctas:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

SAS y SSS son dos teoremas para demostrar la congruencia de triángulos. Estos teoremas se pueden utilizar en:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Se pueden utilizar SSS y SAS para demostrar la congruencia entre más de dos triángulos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan dos triángulos. El primer triángulo tiene un lado de longitud 5 cm y el otro de longitud 7 cm. Ambos forman un ángulo de 40o.El segundo triángulo también tiene dos lados de la misma longitud que forman un ángulo de 40o.¿Son congruentes estos triángulos? En caso afirmativo, ¿qué teorema se puede utilizar para demostrar la congruencia?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan dos triángulos. El primer triángulo tiene un lado de longitud 5 cm y el otro de longitud 4 cm. Ambos forman un ángulo de 60o.El segundo triángulo también tiene dos lados de la misma longitud que forman un ángulo de 61o.¿Son congruentes estos triángulos? En caso afirmativo, ¿qué teorema se puede utilizar para demostrar la congruencia?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si demuestras que dos triángulos son congruentes utilizando SSS, ¿significa esto que también tendrán áreas iguales?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si demuestras que dos triángulos son congruentes utilizando SAS, ¿significa esto que también tendrán perímetros iguales?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Utilizar SSS y SAS significa que no necesitarás hacer ninguna medición para demostrar la congruencia?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si te dan dos triángulos y ambos tienen dos lados respectivos iguales, ¿significa esto que estos triángulos son congruentes?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Cuándo utilizas SSS y SAS?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan tres triángulos. Los lados del primer triángulo son todos iguales a los lados respectivos del segundo triángulo. Dos lados y el ángulo intermedio del tercer triángulo son iguales a los dos lados y al ángulo respectivos del segundo triángulo. Marca todas las afirmaciones que sean correctas:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan dos triángulos rectángulos. Los dos catetos del primer triángulo rectángulo son iguales a los del segundo triángulo. Marca todas las afirmaciones que sean correctas:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

SAS y SSS son dos teoremas para demostrar la congruencia de triángulos. Estos teoremas se pueden utilizar en:

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Se pueden utilizar SSS y SAS para demostrar la congruencia entre más de dos triángulos?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan dos triángulos. El primer triángulo tiene un lado de longitud 5 cm y el otro de longitud 7 cm. Ambos forman un ángulo de 40o.El segundo triángulo también tiene dos lados de la misma longitud que forman un ángulo de 40o.¿Son congruentes estos triángulos? En caso afirmativo, ¿qué teorema se puede utilizar para demostrar la congruencia?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Se dan dos triángulos. El primer triángulo tiene un lado de longitud 5 cm y el otro de longitud 4 cm. Ambos forman un ángulo de 60o.El segundo triángulo también tiene dos lados de la misma longitud que forman un ángulo de 61o.¿Son congruentes estos triángulos? En caso afirmativo, ¿qué teorema se puede utilizar para demostrar la congruencia?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si demuestras que dos triángulos son congruentes utilizando SSS, ¿significa esto que también tendrán áreas iguales?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si demuestras que dos triángulos son congruentes utilizando SAS, ¿significa esto que también tendrán perímetros iguales?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

¿Utilizar SSS y SAS significa que no necesitarás hacer ninguna medición para demostrar la congruencia?

Mostrar respuesta
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si te dan dos triángulos y ambos tienen dos lados respectivos iguales, ¿significa esto que estos triángulos son congruentes?

Mostrar respuesta

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Regístrate gratis
Has alcanzado el límite diario de IA

Comienza a aprender o crea tus propias tarjetas de aprendizaje con IA

Equipo editorial StudySmarter

Equipo de profesores de LAL y LLL

  • Tiempo de lectura de 9 minutos
  • Revisado por el equipo editorial de StudySmarter
Guardar explicación Guardar explicación
Tarjetas de estudio
Tarjetas de estudio

Saltar a un capítulo clave

    En este caso, atajos para saber si dos o más triángulos son congruentes o no. Por eso se han introducido cinco atajos o teoremas, abreviados para que sean más fáciles de recordar: SSS, SAS, HL, ASA y AAS. En este artículo, sólo se explicarán los dos primeros. Más sobre el resto en otro artículo.

    Si entre dos o más triángulos sólo detectas una de las siguientes condiciones, significa que los triángulos son congruentes entre sí.

    ¿Qué es SSS?

    Lado-Lado-Lado o SSS para abreviar es bastante sencillo de entender.

    El teorema SSS significa que los tres lados correspondientes son iguales entre dos o más triángulos, lo que significa que todos los ángulos correspondientes también son iguales.

    Así que si detectas SSS, piensa en congruencia.

    Veamos algunos ejemplos de SSS.

    Dos triángulos equiláteros están situados uno junto al otro. Si no sabes qué es un triángulo equilátero, significa simplemente un triángulo con todos los lados iguales.

    ¿Son congruentes estos dos triángulos?

    Dos triángulos equiláteros - StudySmarter Original

    Así que, por mera observación, se puede ver que ambos equiláteros son efectivamente iguales (iguales) tanto en longitud como en ángulo.

    Éste es un buen caso para aplicar el teorema SSS para demostrar la congruencia. Así pues, lado-lado-lado: los tres lados respectivos son iguales entre estos triángulos. Puedes mirar la imagen de arriba para entenderlo mejor. Podemos decir que el primer triángulo es congruente con el segundo triángulo:

    Triángulo_1 ≅ Triángulo_2

    El ejemplo anterior es un caso sencillo, porque ni siquiera necesitas mirar si los lados dados son congruentes, es decir, si los lados de un triángulo son iguales a los lados respectivos del otro triángulo.

    ¿Por qué es importante esto? Puedes colocar los triángulos de cualquier manera uno respecto del otro y seguirá siendo fácil saber que son congruentes, porque todos los lados tienen la misma longitud.

    Así que veamos un caso en el que es importante tener en cuenta el orden en que comparamos los lados de un triángulo y del otro en el siguiente ejemplo.

    Aquí tienes dos triángulos colocados de forma diferente el uno del otro: un triángulo está girado respecto al otro. ¿Son congruentes estos triángulos?

    Triángulos orientados de forma diferente - StudySmarter Original

    Observando las longitudes de los lados de ambos triángulos es evidente que los triángulos dados son congruentes dado el teorema SSS:

    ABC ≅ DEF

    En este ejemplo, el orden de las letras también demuestra que los lados de un triángulo son iguales a los lados respectivos del otro triángulo. ABC y DEF están ordenados alfabéticamente y los lados respectivos AB, BC, CA son iguales en longitud a DE, EF, FD consecutivamente. Sin embargo, esto no es tan evidente al mirar la imagen anterior. Si no hubiera letras nombrando los triángulos, primero tendrías que entender que los triángulos están girados uno respecto al otro.

    Ten en cuenta que no siempre es así, como en el ejemplo anterior: en algunos casos, los nombres de los triángulos no coinciden alfabéticamente ni están ordenados de forma lógica, pero los triángulos pueden seguir siendo congruentes. Fíjate siempre primero en cómo están colocados los triángulos entre sí. Los nombres de los triángulos son arbitrarios.

    En la figura siguiente, la recta XY es equidistante de la recta MN. ¿Es el triángulo YMX congruente con el triángulo YNX?

    SSS y SAS Imagen de triángulos congruentes formados por rectas equidistantes StudySmarterImagen 1 de triángulos congruentes formados a partir de rectas equidistantes - StudySmarter Original

    Solución

    Que la recta XY sea equidistante a la recta MN significa que corta a MN en su punto medio. Esto implica que;

    MX¯=XN¯MY¯=YN¯

    SSS y SAS Imagen 2 de triángulos congruentes formados por rectas equidistantes StudySmarter

    Imagen 2 de triángulos congruentes formados a partir de rectas equidistantes - StudySmarter Original

    Ahora, ambos triángulos YMX e YNX tienen el mismo tercer lado XY.

    SSS y SAS Imagen 3 de triángulos congruentes formados por rectas equidistantes StudySmarter

    Imagen 3 de triángulos congruentes formados a partir de rectas equidistantes - StudySmarter Original

    Por tanto;

    YMXYNX

    Pasemos al siguiente teorema llamado SAS.

    ¿Qué es el SAS?

    Lado-Ángulo-Lado o SAS, para abreviar, significa que dos lados correspondientes junto con el ángulo de unión son iguales entre dos o más triángulos.

    SAS es cierto porque la longitud del tercer lado está predeterminada si se conoce la longitud de los dos lados restantes y el ángulo que forman. Si dos o más triángulos tienen dos lados iguales con el mismo ángulo exacto entre ellos, significa que los triángulos dados son congruentes.

    Veamos un par de ejemplos de SAS.

    Se dan dos triángulos uno al lado del otro. El primer triángulo tiene un ángulo de 60º y los dos lados que lo forman tienen ambos una longitud de 6. El mismo caso con el segundo triángulo. ¿Son congruentes estos triángulos?

    Triángulos con ángulos iguales y lados respectivos - StudySmarter Original

    Puede que pienses que esto es bastante fácil, ¿no? ¿Bastante trivial quizá?

    ¡Pues sí! Sólo con mirar la imagen, puedes darte cuenta de que se trata del mismo caso que el primer ejemplo de SSS, sólo que los lados tienen longitudes distintas. En este caso, sin embargo, la información dada sobre los triángulos es sólo de las longitudes de dos lados y del ángulo intermedio. Si ya conoces bien los triángulos equiláteros, puedes decir enseguida que ambos son congruentes, incluso sin la imagen.

    Si sólo tienes en cuenta la información dada, los triángulos de este ejemplo son congruentes dada la condición SAS:

    Triángulo_1 ≅ Triángulo_2

    Intentemos un caso un poco más complejo.

    Tres triángulos están colocados de forma diferente entre sí. Mira la imagen de abajo.

    Triángulos colocados de forma diferente - StudySmarter Original

    ¿Son congruentes estos triángulos?

    Puedes ver que los triángulos están girados entre sí. Observando los valores dados en los triángulos, podemos ver que ABC no es congruente con DEF porque los ángulos entre los lados iguales correspondientes AB, BC y DE, FE no son iguales. Sin embargo, ABC y XYZ son congruentes debido al teorema SAS, porque ambos tienen lados respectivos iguales y el ángulo formado por ellos también es el mismo:

    ABC ≅ XYZ

    Recuerda que los nombres de los triángulos son arbitrarios y que, en algunos casos, los nombres de los triángulos no coinciden alfabéticamente ni están ordenados lógicamente. Éste es el caso del ejemplo anterior, pero ABC y XYZ siguen siendo congruentes debido a SAS.

    Vayamos a más ejemplos.

    Veamos un ejemplo para comprender mejor qué significan SAS y SSS, así como para observar la distinción entre ambos.

    SSS y SAS Una imagen que muestra tres diagramas de que retrata los teoremas SSS y SAS StudySmarterUna imagen que muestra tres diagramas de que retrata los teoremas SSS y SAS - StudySmarter Original

    La siguiente figura consta de tres diagramas etiquetados como I, II y III. Determina lo siguiente:

    a) ¿Son todos congruentes?

    b) ¿Cuál (cuáles) es (son) congruente (s) SSS?

    c) ¿Cuáles son congruentes con SAS?

    d) Si el área del ΔMON es 60m2, ∠PRQ es 60° y la línea PR es 10m halla QR.

    Solución

    a) A partir de la figura anterior, el diagrama I tiene ambos triángulos unidos tienen dos de sus lados y ángulo iguales. Por tanto, respecto al teorema SAS, podemos decir que ambos triángulos en I son congruentes.

    En el diagrama II, los tres lados de ambos ángulos son iguales; por tanto, de acuerdo con el teorema SSS, ambos triángulos del diagrama II son congruentes.

    En el diagrama III, ambos triángulos tienen dos de sus lados y ángulo iguales. Por tanto, con respecto al teorema SAS, podemos decir que ambos triángulos del III son congruentes.

    b) Basándonos en la solución anterior de la pregunta a), podemos decir que sólo el diagrama II es congruente SSS.

    c) Basándonos en la solución anterior de la pregunta a), podemos decir que ambos diagramas I y III son congruentes SAS.

    d) Puesto que los triángulos MON y PQR son congruentes SAS, es decir;

    MONPQR

    Entonces

    Area of MON=60m2Area of PQR=60m2

    Para hallar la recta QR cuando se da PR, sabemos que;

    Area of PQR==PR¯×QR¯×cos(PRQ)60m2=10m×QR¯×cos60°

    Haz que la recta QR sea el sujeto de la fórmula dividiendo ambos lados de la ecuación por el producto de 10m y cos60° para obtener;

    QR¯=60m210m×cos60°

    Recuerda que

    cos60°=0.5

    Por tanto

    QR¯=60m210m×0.5QR¯=60m25mQR¯=60mm251mQR¯=12m

    SSS y SAS - Puntos clave

    • Existen cinco teoremas de congruencia de triángulos, que ayudan a evaluar si unos triángulos dados son congruentes.
    • Estos teoremas son SSS, SAS, HL, ASA y AAS;
    • SSS (Lado-Lado-Lado) afirma que dos o más triángulos son congruentes si todos sus lados respectivos son iguales;

    • SAS (Lado-Ángulo-Lado) afirma que dos o más triángulos son congruentes si dos lados consecutivos son iguales al de otro triángulo y los lados respectivos forman el mismo ángulo exacto.

    Aprende más rápido con las 11 tarjetas sobre LAL y LLL

    Regístrate gratis para acceder a todas nuestras tarjetas.

    LAL y LLL
    Preguntas frecuentes sobre LAL y LLL
    ¿Qué es LAL en matemáticas?
    LAL significa Lado-Ángulo-Lado, un criterio de congruencia de triángulos donde dos lados y el ángulo comprendido son iguales.
    ¿Qué es LLL en matemáticas?
    LLL significa Lado-Lado-Lado, un criterio de congruencia de triángulos donde los tres lados son iguales.
    ¿Cómo se usa el criterio LAL?
    El criterio LAL se usa para demostrar que dos triángulos son congruentes si tienen dos lados y el ángulo comprendido iguales.
    ¿Cómo se aplica el criterio LLL?
    El criterio LLL se aplica demostrando que dos triángulos son congruentes si tienen los tres lados iguales.
    Guardar explicación

    Pon a prueba tus conocimientos con tarjetas de opción múltiple

    ¿Cuándo utilizas SSS y SAS?

    Se dan tres triángulos. Los lados del primer triángulo son todos iguales a los lados respectivos del segundo triángulo. Dos lados y el ángulo intermedio del tercer triángulo son iguales a los dos lados y al ángulo respectivos del segundo triángulo. Marca todas las afirmaciones que sean correctas:

    Se dan dos triángulos rectángulos. Los dos catetos del primer triángulo rectángulo son iguales a los del segundo triángulo. Marca todas las afirmaciones que sean correctas:

    Siguiente

    Descubre materiales de aprendizaje con la aplicación gratuita StudySmarter

    Regístrate gratis
    1
    Acerca de StudySmarter

    StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.

    Aprende más
    Equipo editorial StudySmarter

    Equipo de profesores de Matemáticas

    • Tiempo de lectura de 9 minutos
    • Revisado por el equipo editorial de StudySmarter
    Guardar explicación Guardar explicación

    Guardar explicación

    Sign-up for free

    Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

    La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

    • Tarjetas y cuestionarios
    • Asistente de Estudio con IA
    • Planificador de estudio
    • Exámenes simulados
    • Toma de notas inteligente
    Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.