Open in App
Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|
Geometría plana

Como ya sabes, la Geometría es una rama de las matemáticas que analiza y compara las relaciones entre puntos, líneas, curvas, Ángulos, superficies y figuras sólidas en el espacio. Sin embargo, en los primeros años estudiarás Geometría en el plano; es decir, en dos dimensiones. Por tanto, en este artículo hablaremos de…

Contenido verificado por expertos en la materia
App StudySmarter gratuita con más de 20 millones de estudiantes
Mockup Schule

xplora nuestra app y descubre más de 50 millones de materiales de aprendizaje totalmente gratis.

Geometría plana

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Como ya sabes, la Geometría es una rama de las matemáticas que analiza y compara las relaciones entre puntos, líneas, curvas, Ángulos, superficies y figuras sólidas en el espacio.

Sin embargo, en los primeros años estudiarás Geometría en el plano; es decir, en dos dimensiones. Por tanto, en este artículo hablaremos de los elementos geométricos que podemos encontrar en el plano —como rectas, Ángulos, vectores, Cónicas y polígonos, entre otros—.

No obstante, si lo que necesitas aprender está relacionado con la geometría en tres dimensiones, echa un vistazo a nuestro artículo sobre Geometría en el espacio.

¿Qué es la geometría plana?

La geometría plana es el estudio de las relaciones entre puntos, líneas, curvas, ángulos y planos en dos dimensiones.

Es decir, podríamos definir la geometría plana como el estudio de las figuras geométricas que no poseen volumen. Veamos en profundidad algunos elementos importantes de esta geometría plana.

Sistema de coordenadas en el plano

Para poder representar todos los objetos geométricos que vas a aprender, necesitas primero conocer el Sistema de Coordenadas en el plano. También, puedes ver el artículo dedicado exhaustivamente a los distintos sistemas de coordenadas; pero, aquí comentaremos brevemente el de dos dimensiones.

El Sistema de Coordenadas en el plano es un sistema bidimensional; es decir, está formado por dos dimensiones.

  • Por tanto, utilizaremos el plano cartesiano, y nuestros ejes principales serán: el eje de abscisas (o eje \(x\)) y el eje de ordenadas (o eje \(y\)), que son perpendiculares entre sí.

Para expresar las coordenadas de un punto en el plano, usamos la siguiente notación:

\[P(x,y)\]

Esto quiere decir que el punto \(P\) tiene:

  1. Una coordenada \(x\), que significa la distancia a la que está desde el \(0\) hasta el valor de \(x\) en el eje de abscisas.
  2. Una coordenada \(y\), que indica la distancia del punto desde el \(0\) hasta el valor de \(y\) en el eje.

Formas bidimensionales

  • Un objeto bidimensional es una figura definida en un plano que considera solo dos dimensiones: longitud y anchura.
  • Un plano es una superficie plana que se extiende perpetuamente en dos dimensiones.

Recta, semirrecta y segmento

Empecemos por definir una recta en el plano.

Una recta es un objeto geométrico formado por infinitos puntos alineados en la misma dirección.

Se representa mediante la ecuación \(y=mx+c\)

  • Donde \(m\) es la pendiente de la recta y \(c\) es la intersección con el eje \(y\).

La pendiente mide la inclinación de una línea y viene dada por la fórmula:

\[m=\frac{y_2-y_1}{x_2-x_1}\]

Hay varios tipos de rectas. La siguiente tabla describe cuatro de ellos.:

Tipo de recta

Diagrama

Descripción

Líneas paralelas

Es importante tener en cuenta que un par de líneas paralelas no se intersecan entre sí, por mucho que se extiendan.

Geometría plana rectas paralelas, StudySmarter

Se dice que dos líneas son paralelas si se encuentran en el mismo plano y no se cruzan.

Un par de rectas paralelas tienen la misma pendiente.

Líneas perpendiculares

Geometría plana, rectas perpendiculares, StudySmarter

Se dice que dos rectas son perpendiculares si se cortan en ángulo recto.

El producto de las dos pendientes es -1.

Segmento

Geometría plana, segmento, StudySmarter

Un segmento es una línea recta con dos puntos extremos.

Semirrecta

Geometría plana, semirrecta, StudySmarter

Una semirrecta es una recta con un punto de partida fijo y un punto final que se prolonga eternamente.

Tabla 1: Tipos de recta.

Ángulos

Un ángulo está formado por la unión de dos semirrectas. Estas semirrectas se encuentran en un punto final común. El ángulo se representa con el símbolo \(\angle\).

Hay seis tipos de ángulos con los que debes familiarizarte. Se muestran en la siguiente tabla:

Tipo de ángulo

Diagrama

Descripción

Ángulo agudo

Geometría plana, ángulo agudo, StudySmarter

Ángulo de menos de \(90º\).

Ángulo recto

Geometría plana, ángulo recto, StudySmarter

Ángulo de \(90º\).

Ángulo obtuso

Geometría plana, ángulo obtuso, StudySmarter

Ángulo de más de \(90º\), pero menos de \(180º\).

Ángulo llano

Geometría plana, ángulo llano, StudySmarter

Ángulo de \(180º\).

Ángulo cóncavo

Geometría plana, ángulo cóncavo, StudySmarter

Ángulo de más de \(180º\), pero menos de \(360º\).

Rotación completa

Geometría plana, rotación completa, StudySmarter

Ángulo de \(360º\).

Tabla 2: Clasificación de los ángulos.

Aquí hay varios tipos de ángulos más notables:

  • Un ángulo interior es un ángulo dentro de una forma; está formado por dos lados del polígono.
  • Un ángulo exterior es un ángulo entre cualquier lado de una forma y una línea extendida desde el siguiente lado del polígono.
  • Dos ángulos se llaman suplementarios si suman \(180º\).
  • Se dice que dos ángulos son complementarios si suman \(90º\).

Puedes encontrar una explicación detallada de los ángulos en Ángulos.

Perímetro y área

Comecemos definiendo el perímetro y el área de un objeto.

  • El perímetro es la distancia alrededor de los bordes de un objeto. En otras palabras, es la suma de las medidas de todos sus lados.
  • El área de un objeto es el tamaño de su superficie.

Aquí tienes un ejemplo:

Encuentra el perímetro y el área de un rectángulo, cuyo lado mayor mide 3 unidades y cuyo lado menor mide 2 unidades.

Solución:

El perímetro de un rectángulo es la suma de todos sus lados.

Por lo tanto:

\[P = 2 + 2 + 3 + 3 = 10\text{ unidades}\]

El área de un rectángulo se encuentra al multiplicar su longitud y su anchura. Así, obtenemos:

\[A=2\times 3 = 6\text{ unidades}^2\]

Por tanto, el perímetro del rectángulo es de 10 unidades y su área es de 6 unidades2.

Polígono

¿Qué obtienes si unes varias líneas por sus extremos?, ¿adivinas la forma? Así es: ¡se llama polígono!

Un polígono es una forma cerrada bidimensional formada por líneas rectas.

  • Si todos los lados y todos los ángulos de un polígono son iguales, se llama polígono regular.
  • En caso contrario, se denomina polígono irregular.

Hay dos propiedades importantes de los polígonos que debes conocer. Se enumeran en la siguiente tabla:

Propiedad

Descripción

Ángulo exterior de un polígono

La suma de los ángulos exteriores de un polígono es \(360º\).

Para un polígono con \(n\) lados, cada ángulo exterior es igual a:

\[\text{Ángulo exterior}=\frac{360º}{n}\]

Ángulo interior de un polígono

Para un polígono con \(n\) lados, cada ángulo interior de un polígono viene dado por la fórmula:

\[\text{Ángulo interior}=180º-\text{Ángulo exterior}\]

Tabla 3. Propiedades de los polígonos.

Triángulos

Un triángulo es un polígono con tres lados y tres vértices.

Los triángulos, como verás a lo largo de la Geometría, juegan un papel importante en otro subtema llamado Trigonometría. Aunque, ¡más adelante hablaremos de ello! Aquí, solo cubriremos el área de un triángulo básico y describiremos varias formas de triángulos que se ven comúnmente a lo largo de este temario. Puedes encontrar una información más detallada sobre los triángulos en nuestro artículo al respecto.

Una propiedad fundamental de un triángulo es que la suma de sus ángulos interiores es \(180º\).

El área de un triángulo viene dada por la fórmula:

\[A=\dfrac{b\times h}{2},\]

  • Donde: \(b\) es la base y \(h\) es la altura.

.Geometría plana, componentes para calcular el área de un triángulo, StudySmarter

Fig. 1: Componentes para calcular el área de un triángulo.

La siguiente tabla ilustra seis tipos fundamentales de triángulos.

Tipo de triángulo

Propiedades

Diagrama

Triángulo equilátero

Tres lados iguales y tres ángulos iguales.

Geometría plana, triángulo equilátero, StudySmarter

Triángulo isósceles

Dos lados iguales y dos ángulos iguales.

Geometría plana, triángulo isósceles, StudySmarter

Triángulo escaleno

Sin lados iguales y sin ángulos iguales.

Geometría plana, triángulo isósceles, StudySmarter

Triángulo acutángulo

Todos los ángulos son menores de

\(90º\).

Geometría plana, triángulo acutángulo, StudySmarter

Triángulo rectángulo

Tiene un ángulo igual a \(90º\).

Geometría plana, triángulo rectángulo, StudySmarter

Triángulo obtusángulo

Tiene un ángulo mayor de \(90º\).

Geometría plana, triángulo obtusángulo, StudySmarter

Tabla 4: Clasificación de triángulos.

Cónicas

Pasemos a otras forma de interés, llamadas Cónicas.

Las cónicas son figuras geométricas en dos dimensiones que se expresan mediante Ecuaciones cuadráticas.

Todas las cónicas se pueden definir como un lugar geométrico en el plano. Puedes encontrar una explicación completa de la geometría de las cónicas en su correspondiente artículo.

La siguiente tabla describe las cuatro formas principales de cónicas.

NombreDescripciónDiagrama

Circunferencia

Figura que tiene un centro y un radio.

Geometría plana, circunferencia, StudySmarter

Elipse

Las elipses tienen dos focos, un semieje mayor y un semieje menor.

Geometría plana, elipse, StudySmarter

Parábola

Las parábolas se forman a partir de una recta directriz y un foco.

Geometría plana, parábola, StudySmarter

Hipérbola

La hipérbola tiene dos focos, un semieje real y un semieje imaginario.

Geometría plana, hipérbola, StudySmarter

Tabla 5: Tipos de cónicas.

Vectores

Un vector es un concepto importante a la hora de describir el movimiento de un punto a otro.

Un vector es un objeto que tiene magnitud, dirección y sentido.

Un vector puede visualizarse geométricamente como un segmento con una dirección, una longitud igual a la magnitud del vector y un sentido indicado por una flecha. A continuación, se muestra una representación gráfica de un vector.

Geometría plana, representación de un vector, StudySmarterFig. 2: Representación de un vector.

Los vectores en el plano se representan mediante dos coordenadas, como mencionamos anteriormente.

Este tema se trata detenidamente en el artículo de Vectores.

Veamos, ahora, algunas operaciones vectoriales comunes:

Operaciones con vectores

Notación

Representación gráfica

Suma de vectores

\[\vec{a}+\vec{b}\]

Geometría plana, suma de vectores, StudySmarter

Resta de vectores

\[\vec{a}-\vec{b}\]

Geometría plana, resta de vectores, StudySmarter

Producto por un escalar

\[k\cdot\vec{a}\]

Geometría plana, productor de un vector por un escalar, StudySmarter

Producto escalar

\[\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos(\alpha)\]

Geometría plana, producto escalar de dos vectores, StudySmarter

Tabla 5: Operaciones con vectores.

Geometría en el plano - Puntos clave

  • El sistema de coordenadas en el plano es un sistema bidimensional; es decir, está formado por dos dimensiones.
  • Una recta se representa mediante la ecuación \(y=mx+c\); donde \(m\) es la pendiente de la recta y \(c\) es la intersección con el eje \(y\).
  • Podemos clasificar los tipos de recta como: rectas paralelas, rectas perpendiculares, segmentos y semirrectas.
  • Un ángulo está formado por la unión de dos semirrectas. Estas semirrectas se encuentran en un punto final común.
  • Podemos clasificar los ángulos como: ángulos agudos, ángulos rectos, ángulos obtusos, ángulos llanos, ángulos cóncavos, ángulos complementarios y ángulos suplementarios.
  • El perímetro es la distancia alrededor de los bordes de un objeto. En otras palabras, es la suma de las medidas de todos sus lados.
  • El área de un objeto es el tamaño de la superficie de un objeto.
  • Un polígono es una forma cerrada bidimensional formada por líneas rectas.
  • Un triángulo es un polígono con tres lados y tres vértices.
  • Existen cuatro tipos de cónicas: la Circunferencia, La elipse, la hipérbola y La parábola.
  • Un vector es un objeto que tiene magnitud, dirección y sentido. Los vectores en el plano se representan mediante dos coordenadas.

Preguntas frecuentes sobre Geometría plana

El plano es el objeto geométrico que tiene dos dimensiones extensas que ocupan toda la superficie.

Un ángulo está formado por la unión de dos semirrectas. Estas semirrectas se encuentran en un punto final común.

  • Una recta es un objeto geométrico formado por infinitos puntos alineados en la misma dirección. 
  • Mientras que una semirrecta es una recta con un punto de partida fijo y un punto final, que se prolonga eternamente.

Las cónicas son lugares geométricos del plano. 

  • Por ejemplo, la circunferencia es el lugar geométrico de los puntos del plano que están todos a la misma distancia de un punto llamado centro. A la distancia se le denomina radio.

Un vector es un objeto que tiene magnitud, dirección y sentido. Los vectores en el plano se representan mediante dos coordenadas.

La geometría plana es el estudio de las relaciones entre puntos, líneas, curvas, ángulos y planos en dos dimensiones. En otras palabras, la geometría plana como el estudio de las figuras geométricas que no poseen volumen

Cuestionario final de Geometría plana

Geometría plana Quiz - Teste dein Wissen

Pregunta

¿Qué es una recta perpendicular?

Mostrar respuesta

Answer

Líneas que se encuentran en un ángulo recto \((90°)\).

Show question

Pregunta

¿Qué es una mediatriz?

Mostrar respuesta

Answer

La partición de una línea en dos partes iguales.

Show question

Pregunta

¿Qué es la bisectriz de dos ángulos?

Mostrar respuesta

Answer

La recta, en este caso, es la que divide un ángulo en dos partes iguales e interseca el lado opuesto de un triángulo.

Show question

Pregunta

Si se tiene un ángulo de sesenta y dos grados, la recta bisectriz se divide en dos partes de....

Mostrar respuesta

Answer

\(40\) y \(20\) grados.

Show question

Pregunta

En el primer paso para encontrar una recta mediatriz, se tiene que:

Mostrar respuesta

Answer

Encontrar la pendiente de la recta.

Show question

Pregunta

En el segundo paso para encontrar una recta mediatriz, se tiene que:

Mostrar respuesta

Answer

Encontrar la pendiente de la recta.

Show question

Pregunta

Calcula la pendiente de la recta que pasa por los puntos: \(A=(2,3)\) y \(B=(4,9)\).

Mostrar respuesta

Answer

\(3\).

Show question

Pregunta

Calcula la pendiente de la recta perpendicular a D que pasa por los puntos: \(A=(2,3)\) y \(B=(4,9)\).

Mostrar respuesta

Answer

\(-6/2\).

Show question

Pregunta

Encuentra el punto medio de la recta que pasa por los puntos \(A=(1,4)\) y \(B=(4,7)\).

Mostrar respuesta

Answer

\( (\dfrac{3}{2},\dfrac{3}{2})\).

Show question

Pregunta

Calcula la recta perpendicular a la recta \(D\) que pasa por los puntos: \(A=(2,7)\) y \(B=(12,5)\).

Mostrar respuesta

Answer

\(y-5=5(x-2)=0\).

Show question

Pregunta

¿Qué es la mediatriz de un triángulo?

Mostrar respuesta

Answer

La mediatriz de un triángulo es la recta que divide uno de los lados de un triángulo en dos partes iguales.

Show question

Pregunta

La pendiente es la inclinación de una función. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero

Show question

Pregunta

¿Cuál es el símbolo de la pendiente?

Mostrar respuesta

Answer

\(m\).

Show question

Pregunta

\(Ax+By=C\)  es una forma para la ecuación de la recta. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

La bisectriz y la mediatriz son lugares geométricos. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

¿Cómo se llama el eje de las \(x\)?

Mostrar respuesta

Answer

Eje de abscisas.

Show question

Pregunta

¿Cómo se llama el eje de las \(y\)?

Mostrar respuesta

Answer

Eje de ordenadas.

Show question

Pregunta

¿Cuántas coordenadas se utilizan para representar objetos en el plano?

Mostrar respuesta

Answer

1.

Show question

Pregunta

Escribe la ecuación de una recta en el plano.

Mostrar respuesta

Answer

\(y=mx+c\).

Show question

Pregunta

¿Cómo se llaman dos rectas que forman un ángulo de 90º entre sí?

Mostrar respuesta

Answer

Rectas perpendiculares.

Show question

Pregunta

¿Cómo se llaman las rectas que nunca se cortan?

Mostrar respuesta

Answer

Rectas paralelas.

Show question

Pregunta

Si sumas un ángulo de 90º más un ángulo de 30º, ¿qué tipo de ángulo obtienes?

Mostrar respuesta

Answer

Un ángulo obtuso de 120º.

Show question

Pregunta

Si tienes un ángulo de 40º, ¿cuánto mide su ángulo complementario?

Mostrar respuesta

Answer

50º.

Show question

Pregunta

Si tienes un ángulo de 30º, ¿cuánto mide su ángulo suplementario?

Mostrar respuesta

Answer

150º.

Show question

Pregunta

¿Cuánto mide el ángulo exterior de un pentágono?

Mostrar respuesta

Answer

72º.

Show question

Pregunta

¿Cuánto vale el área de un triángulo de 3 cm de base y 6 cm de altura?

Mostrar respuesta

Answer

9 cm2.

Show question

Pregunta

¿Qué tienen en común todas las cónicas?

Mostrar respuesta

Answer

Todas son lugares geométricos del plano.

Show question

Pregunta

¿Cuáles son las tres características de un vector?

Mostrar respuesta

Answer

Tienen magnitud, dirección y sentido.

Show question

Pregunta

¿Cómo se indica el sentido de un vector representado en el plano?

Mostrar respuesta

Answer

Con la punta de la flecha.

Show question

Pregunta

¿Cuántas coordenadas tiene un vector en el plano?

Mostrar respuesta

Answer

2.

Show question

Pregunta

Calcula la ecuación vectorial de una recta que pasa por el punto \(B(3,-1)\) y tiene vector director \((2,0)\).

Mostrar respuesta

Answer

\((x,y)=(3,-1)+t(2,0)\).

Show question

Pregunta

En la ecuación punto-pendiente de la recta podemos ver fácilmente:

Mostrar respuesta

Answer

Un punto por el que pasa la recta.

Show question

Pregunta

En la ecuación explícita de la recta podemos observar fácilmente:

Mostrar respuesta

Answer

La pendiente de la recta.

Show question

Pregunta

En la ecuación continua de la recta podemos observar fácilmente:

Mostrar respuesta

Answer

La pendiente de la recta.

Show question

Pregunta

¿En cuál de las distintas ecuaciones de la recta está despejada la \(y\)?

Mostrar respuesta

Answer

En la ecuación explícita de la recta.

Show question

Pregunta

Si tienes la pendiente de la recta y un punto por el que pasa, ¿qué ecuación de la recta es más fácil de calcular?

Mostrar respuesta

Answer

La ecuación punto-pendiente.

Show question

Pregunta

Si tienes la pendiente de la recta y la ordenada en el origen, ¿cuál de las ecuaciones de la recta es más fácil de calcular?

Mostrar respuesta

Answer

La ecuación explícita de la recta.

Show question

Pregunta

La ecuación de una recta es: \(y=3x-2\). ¿Puedes ver a primera vista el vector director de la recta?

Mostrar respuesta

Answer

No, no está mostrado explícitamente.

Show question

Pregunta

La ecuación de una recta es: \(y-2=4(x+2)\). ¿Puedes ver a primera vista la pendiente de la recta?

Mostrar respuesta

Answer

Sí, la pendiente de \(m=4\).

Show question

Pregunta

¿Cuál es la pendiente de la recta con ecuación \(2x+3y-1=0\)?

Mostrar respuesta

Answer

\(m=-\dfrac{2}{3}\).

Show question

Pregunta

Calcula las ecuaciones paramétricas de la recta que pasa por el punto \((2,-5)\) con vector director \((-2,-1)\).

Mostrar respuesta

Answer

\(x=2-2t\)

\(y=-5-t\).

Show question

Pregunta

Calcula la ecuación punto-pendiente de la recta que pasa por el punto \((0,2)\) con vector director \((-1,3)\).

Mostrar respuesta

Answer

\(y-3=-3(x+1)\).

Show question

Pregunta

¿Cuál es la ordenada en el origen de la recta que pasa por el \((2,2)\) y tiene vector director \((3,-4)\)?

Mostrar respuesta

Answer

\(n=-\dfrac{2}{3}\).

Show question

Pregunta

¿Cuál es la pendiente de la recta que pasa por el \((2,8)\) y tiene vector director \((2,-4)\)?

Mostrar respuesta

Answer

\(m=-2\).

Show question

Pregunta

Calcula la ecuación explícita de la recta \(-4x+2y-6=0\).

Mostrar respuesta

Answer

\(y=2x+3\).

Show question

Pregunta

¿Qué características en común tienen las rectas de un haz de rectas paralelas?

Mostrar respuesta

Answer

Tienen misma pendiente.

Show question

Pregunta

¿Qué características en común tienen las rectas de un haz de rectas secantes?

Mostrar respuesta

Answer

Tienen misma pendiente.

Show question

Pregunta

¿Cómo pueden ser dos rectas en el plano?

Mostrar respuesta

Answer

Secantes, paralelas o coincidentes.

Show question

Pregunta

Si dos rectas tienen vectores directores proporcionales, las rectas son:

Mostrar respuesta

Answer

Paralelas o coincidentes.

Show question

Pregunta

Si dos rectas tienen pendientes iguales, las rectas son:

Mostrar respuesta

Answer

Paralelas o coindicentes.

Show question

Pon a prueba tus conocimientos con tarjetas de opción múltiple

¿Qué es una recta perpendicular?

¿Qué es una mediatriz?

¿Qué es la bisectriz de dos ángulos?

Siguiente

Tarjetas en Geometría plana50+

Empieza a aprender

¿Qué es una recta perpendicular?

Líneas que se encuentran en un ángulo recto \((90°)\).

¿Qué es una mediatriz?

La partición de una línea en dos partes iguales.

¿Qué es la bisectriz de dos ángulos?

La recta, en este caso, es la que divide un ángulo en dos partes iguales e interseca el lado opuesto de un triángulo.

Si se tiene un ángulo de sesenta y dos grados, la recta bisectriz se divide en dos partes de....

\(40\) y \(20\) grados.

En el primer paso para encontrar una recta mediatriz, se tiene que:

Encontrar la pendiente de la recta.

En el segundo paso para encontrar una recta mediatriz, se tiene que:

Encontrar la pendiente de la recta.

Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

La primera app de aprendizaje que realmente tiene todo lo que necesitas para superar tus exámenes en un solo lugar.

  • Tarjetas y cuestionarios
  • Asistente de Estudio con IA
  • Planificador de estudio
  • Exámenes simulados
  • Toma de notas inteligente
Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter. Únete a más de 22 millones de estudiantes que aprenden con nuestra app StudySmarter.

Scopri i migliori contenuti per le tue materie

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.

Empieza a aprender con StudySmarter, la única app de estudio que necesitas.

Regístrate gratis
Illustration