Iniciar sesión Empieza a estudiar
La app de estudio todo en uno
4.8 • +11 mil reviews
Más de 3 millones de descargas
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Geometría en el espacio

Geometría en el espacio

Seguramente, cuando escuchas la palabra espacio, te hace pensar en estrellas y planetas. También, la palabra geometría te trae a la cabeza imágenes de triángulos, esferas, ángulos, rectas y cubos. Sin embargo, es muy posible que lo que no hayas considerado es que estas ideas están relacionadas entre sí. La del espacio es algo más compleja; por eso, primero introduciremos una idea sencilla, antes de decirte más formalmente qué es la geometría en el espacio.

¿Qué es la geometría analítica en el espacio, con ejemplos?

El espacio es toda aquella área o volumen donde se puede localizar un objeto.

Debido a que la geometría estudia los objetos en el espacio; entonces, la geometría en el espacio es el estudio de los objetos en un sitio donde los puedes localizar.

Ejemplo de ello es un cuarto donde hay una esfera en el centro: el cuarto es un espacio de tres dimensiones, la esfera es el objeto y la forma de localizarlo es que midas su posición en el cuarto.

Para esto último, necesitarás usar una referencia. Por ejemplo: si la esfera está en el medio del cuarto, podrías usar una esquina como el punto de origen; entonces, si el cuarto es un cubo, la esfera estaría sobre el suelo, en el medio con las coordenadas (x,y,z), como se puede ver en la imagen:

Geometría en el espacio elementos de geometría del espacio StudySmarterFig. 1. Objeto en un espacio de 3 dimensiones, definido por coordenadas \(x, y, z\).

En el ejemplo anterior usaste un espacio (que es el cuarto), para localizar un objeto (que es una esfera), midiendo desde un punto de referencia (también conocido como punto de origen) y, a la posición de la esfera, le diste un número de referencia que se conoce como coordenadas.

En una definición más formal:

La geometría es el sistema de reglas y elementos que nos permite identificar, localizar y hacer operaciones con objetos que ocupan un lugar en el espacio.

Los elementos de la geometría del espacio

Sin saberlo, en el ejemplo anterior usaste elementos que son básicos para la geometría del espacio. Estos son:

  • Punto: un elemento infinitamente pequeño, que no posee volumen ni área. En el caso anterior usaste el origen: un punto de referencia para ubicar un objeto.

  • Línea: que, en el caso de la línea recta, puede ser infinita. Además no posee ninguna irregularidad; es decir, es derecha y no tiene curvas. En el ejemplo usaste líneas para ubicar la posición de la esfera.

  • Plano: la esfera está sobre el suelo, esa área sobre la cual se encuentra te provee de una referencia. Esa referencia es que el punto de origen y el punto donde se encuentra la esfera están en el mismo plano. El plano, por su parte, es una superficie plana y que puede ser infinita, además de no tener volumen.

  • Espacio: el espacio es un volumen donde se puede encontrar un objeto. En este caso, el cuarto es ese volumen y contiene: el objeto, los puntos de referencia, el plano y las líneas.

Es bastante común decir que el espacio contiene planos, el plano contiene líneas y las líneas contienen puntos.

Por supuesto, para que esto sea coherente, el espacio debe seguir ciertas reglas, como que las rectas paralelas nunca se toquen o que las rectas perpendiculares se toquen en un solo punto.

La geometría euclidiana

Mucho de lo que has estudiado en el colegio sobre planos, líneas y espacio se conoce como geometría euclidiana. Esta geometría tiene un sistema de reglas que se usa como base para definir los objetos que existen en la geometría y cómo puedes localizarlos, representarlos o hacer operaciones con ellos.

La geometría euclidiana necesita de los mismos elementos básicos que son puntos, líneas, rectas y espacio; además de un amplio número de ciertas reglas y teoremas específicos. Algunas de ellas son que dos rectas paralelas nunca llegan tocarse o que la suma de los cuadrados de un triángulo rectángulo es igual a la hipotenusa, entre muchas otras más.

Estas reglas y teoremas permiten que existan objetos en la geometría, como:

  • Círculos

  • Parábolas

  • Rectas tangentes

  • Superficie en dos dimensiones

  • Ángulos

  • Objetos tridimensionales

Y nos permite saber cosas como:

  • Volúmenes

  • Áreas

  • Cálculo de distancias entre rectas, distancias entre puntos y rectas, distancias entre planos, distancias entre planos y puntos, etc.

  • Representación de vectores

  • Proyecciones ortogonales

  • etc.

La geometría euclidiana debe su nombre al filósofo griego Euclides, a pesar de que la geometría ya era un área conocida por diversas culturas como los egipcios, los babilonios y algunas de la India.

Euclides publicó un tratado llamado Elementos, donde describe varios postulados, que se asumen como ciertos porque son evidentes. Uno de estos famosos postulados es el de las líneas paralelas, que dice:

Si una línea intercepta dos líneas contiguas y la intercepción de las dos líneas produce un ángulo interno de 90 grados, estas líneas se encuentran en el infinito.

Geometría en el espacio Elementos de geometría del espacio  StudySmarterFig. 2. Representación de dos rectas paralelas; la recta que las corta perpendicularmente (en azul turquesa) genera ángulos de \(90^o\) con ambas.

Como puedes ver, el postulado no habla de líneas paralelas. Sin embargo, se puede decir que, por contradicción, si la intersección de las dos líneas produce un ángulo interno de \(90^o\), las líneas nunca se encuentran. Esto significa que son paralelas.

Cabe decir que muchos de estos postulados e ideas eran ya conocidos antes de que él los escribiera formalmente, pero él fue el autor que los organiza en un texto sobre geometría hace cientos de años.

Una distinción importante es que la geometría del plano y del espacio, a pesar de ser el mismo sistema, se diferencian en que el espacio posee una dimensión extra: el espacio posee tres dimensiones y el plano, solo dos.

Diferencia entre geometría plana y del espacio

La geometría plana se refiere muchas veces a la geometría en dos dimensiones, ya sea en los planos siguientes:

\[(x,y)\]

\[(y,z)\]

\[(x,z)\]

La geometría del espacio, por otra parte, añade una dimensión extra; lo que convierte en una geometría en tres dimensiones, o:

\[(x,y,z)\]

La única diferencia ,en este caso, es que los elementos deben ser descritos usando un sistema de tres coordenadas. También debe decirse que un sistema de dos dimensiones se da cuando la tercera coordenada es \(0\). Por ejemplo:

\[(x,y)=(x,y,z(0))\]

Algunos objetos y operaciones en la geometría del espacio

Algunos elementos que veremos en la geometría del espacio serán:

Mientras que algunas operaciones que veremos serán:

  • Proyecciones

  • Cálculo de distancias entre objetos en el espacio.

Ángulos

Los ángulos son definidos como las aperturas que existen entre dos líneas que se tocan en un punto. Se miden en grados o radianes y dependiendo, de las unidades ,estos pueden ser:

  • \(360^0>\phi > 0^o\).
  • \(2\pi > \phi > 0\).

Los ángulos están relacionados con la trigonometría y las funciones trigonométricas como el seno, coseno y tangente, además de sus inversas. Si las líneas que forman los ángulos son finitas es decir, tienen una longitud que puede medirse, entonces, se pueden usar estas relaciones para calcular los ángulos entre estas líneas.

Rectas

Las rectas son uno de los elementos más versátiles que existen en la geometría: pueden ser usados para formar un plano u objetos tridimensionales.

Geometría en el espacio Elementos de geometría del espacio StudySmarterFig. 3. Imagen de una recta: la recta \(y=x\).

Las rectas están definidas como una sucesión de puntos, que no tiene área o volumen; pero, además que no tiene ningún hueco. Esto último es obvio, seguramente, ya que si la recta tuviese un hueco, serían dos líneas.

La ecuación más básica de una recta es la forma llamada punto pendiente, que se expresa como:

\[y=mx+b\]

Donde \(m\) es la pendiente y \(b\) la ordenada al origen. Pero, también, existen otras como la forma paramétrica de una recta.

Vectores

Los vectores son cantidades que poseen una magnitud que es un valory poseen una dirección. En un espacio de dos o tres dimensiones, su magnitud es mostrada como la longitud del vector; \(t\) la dirección del vector depende de un punto de origen. Debido a esto, un vector está relacionado con el espacio geométrico.

Geometría en el espacio Geometría analítica en el espacio vectores StudySmarterFig. 4. Tres vectores en el espacio de dos dimensiones.

Círculos

Los círculos son un elemento bastante especial de la geometría. Son objetos cuyo borde, conocido como perímetro, está siempre a la misma distancia de su centro geométrico. Los círculos sirven como base, por ejemplo, para otras figuras geométricas como el cilindro o el cono, además de estar relacionados con las funciones trigonométricas.

La ecuación más básica de un círculo es:

\[(x-a)^2+(y-b)^2=r^2\]

Donde \((a,b)\) es el centro del circulo y \(r\) es el radio.

Proyecciones y distancias

En el espacio es muy importante conocer distancias. ¿Recuerdas lo que mencionamos acerca del espacio que te evoca estrellas y planetas, y acerca de la geometría que se relaciona con figuras en tres dimensiones? Pues, muchas de los primeros cálculos sobre mediciones de objetos celestes se hicieron a partir de geometría básica. Entre ellos se destacan:

  • El tamaño de la tierra, por Eratóstenes.

  • La distancia entre la tierra y la luna, por Hiparco.

Las distancias entre objetos pueden ser algo complejas de calcular. Pero, en StudySmarter encontrarás cómo calcularlas en el espacio.

Otro elemento importante de la geometría son las proyecciones, que son básicamente una forma de dibujar una figura, recta o plano sobre otro objeto. Por ejemplo: si proyectamos una esfera sobre un plano, se obtendría un circulo sobre un plano. Para esto se requiere traducir cada punto de la superficie de la esfera que es proyectada, a un punto en el plano.

Si quieres aprender a resolver problemas acerca de distancias y proyecciones además de aprender sobre rectas, vectores y círculos, no olvides que tenemos más artículos sobre ello.

Problemas de geometría en el espacio

Hay tres problemas básicos que abordaremos en geometría del espacio, cada uno tiene su propio artículo aquí en StudySmarter. Los problemas son:

  1. Ángulos

  2. Proyecciones ortogonales en el espacio

  3. Puntos simétricos en el espacio y distancias en el espacio

Para hacer esto, usaremos teoremas de distancias y también relaciones geométricas que ya conoces.

Si quieres aprender más acerca de esto, no olvides pasar a los artículos correspondientes.

Geometría en el espacio - Puntos clave

  • La geometría en el espacio es el sistema de reglas y elementos que nos permite identificar, localizar y hacer operaciones con objetos que ocupan un lugar en el espacio.
  • La geometría en el espacio tiene ciertos elementos básicos como: el punto, la recta, el plano y el espacio.
  • Algunos objetos que pueden existir en la geometría del espacio son los vectores, círculos, rectas y ángulos.
  • Los ángulos son la apertura creada por dos rectas que se tocan en un solo punto. La recta es una línea finita o infinita de puntos que es derecha y existe sin volumen o área, tampoco tiene huecos.
  • El círculo es una figura geométrica en el que su perímetro está a la misma distancia que su centro geométrico.
  • Los vectores son elementos que poseen una dirección y magnitud.
  • La ecuación básica de una recta es: \(y=mx+b\)

Preguntas frecuentes sobre Geometría en el espacio

La geometría del plano y del espacio, a pesar de pertenecer al mismo sistema, se diferencian en que el espacio posee una dimensión extra.

No existe un creador de la geometría: muchos elementos de la geometría eran conocidos por culturas como los egipcios, babilonios y culturas de la India. Sin embargo, uno de los mayores exponentes antiguos de la geometría fue Euclides.

Los elementos básicos de la geometría del espacio son: 

  • El punto
  • La recta
  • El plano
  • El espacio

Es el sistema de reglas y elementos, que nos permite identificar, localizar y hacer operaciones con objetos que ocupan un lugar en el espacio. 

Ejemplos son:

  • Localizar un objeto en un cuarto usando una referencia y mediciones.
  • Ubicar un punto en un plano.

Cuestionario final de Geometría en el espacio

Pregunta

¿Qué es el espacio?

Mostrar respuesta

Answer

El espacio es toda aquella área o volumen donde se puede localizar un objeto.

Show question

Pregunta

¿Qué es un punto?

Mostrar respuesta

Answer

Es un elemento infinitamente pequeño que no posee volumen ni área.

Show question

Pregunta

¿Qué es una recta?

Mostrar respuesta

Answer

Es una línea que no posee ninguna irregularidad.

Show question

Pregunta

¿Qué es un plano?

Mostrar respuesta

Answer

El plano es una superficie plana y que puede ser infinita, además de no tener volumen.

Show question

Pregunta

Menciona los 4 elementos de la geometría:

Mostrar respuesta

Answer

El punto, la línea, el plano y el espacio

Show question

Pregunta

Un plano no puede contener líneas. ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso

Show question

Pregunta

Una línea es un conjunto de puntos. ¿Verdadero o falso?

Mostrar respuesta

Answer

verdadero.

Show question

Pregunta

Un punto tiene volumen. ¿Verdadero o falso?

Mostrar respuesta

Answer

Falso.

Show question

Pregunta

¿Cómo se llama la obra famosa de Euclides?

Mostrar respuesta

Answer

Elementos.

Show question

Pregunta

Si se tienen las coordenadas\( x=6\), \(z=7\) en dos dimensiones, ¿cuál es la coordenada \(z\) en tres dimensiones?. 

Mostrar respuesta

Answer

\(z=0\).

Show question

Pregunta

¿Cómo se puede escribir el siguiente punto: \(x=2\), \(y=3\), \(z=0\)?

Mostrar respuesta

Answer

Ambas son correctas.

Show question

Pregunta

Los ángulos se pueden medir en grados y, también, en:

Mostrar respuesta

Answer

Radianes.

Show question

Pregunta

Los ángulos en grados van desde 0 grados hasta...

Mostrar respuesta

Answer

360 grados.

Show question

Pregunta

Los ángulos en radianes van desde 0 hasta ...

Mostrar respuesta

Answer

Ambas son el mismo valor y correctas.


Show question

Pregunta

¿Qué es un ángulo?

Mostrar respuesta

Answer

Los ángulos son definidos como las aperturas que existen entre dos líneas que se tocan en un punto.

Show question

Pregunta

¿Qué es una recta?

Mostrar respuesta

Answer

Una recta es una sucesión de puntos.

Show question

Pregunta

Una recta puede estar contenida un plano,  ¿verdadero o falso?

Mostrar respuesta

Answer

verdadero.

Show question

Pregunta

Una recta puede cruzar un plano,  ¿verdadero o falso?


Mostrar respuesta

Answer

verdadero

Show question

Pregunta

Las rectas pueden ser:



Mostrar respuesta

Answer

Finitas o infinitas.


Show question

Pregunta

La forma punto pendiente de la recta es \(Ax+By=C\), verdadero o falso?

Mostrar respuesta

Answer

Falso.

Show question

Pregunta

Escribe la forma general de la ecuación explícita de la recta

Mostrar respuesta

Answer

\(y=mx+b\).

Show question

Pregunta

El término \(m\) de la forma ordenada la origen es igual a:


Mostrar respuesta

Answer

la pendiente.

Show question

Pregunta

Cuáles son tres formas de la ecuación de la recta:

Mostrar respuesta

Answer

Ordenada al origen, paramétrica e implicita.

Show question

Pregunta

Es la pendiente en la recta \(y=4x-3\).

Mostrar respuesta

Answer

4.

Show question

Pregunta

Calcula la pendiente de la recta que pasa por los puntos \(A=(2;5)\) y \(B=(7;12)\).

Mostrar respuesta

Answer

\(m=7/5\).

Show question

Pregunta

Escribe la ecuación implícita del plano:

Mostrar respuesta

Answer

\(Ax+BY+CZ+D=0\).

Show question

Pregunta

Se tiene un sistema de ecuaciones, donde se tiene un plano y una recta, el sistema tiene una única solución.  ¿Esto qué significa?

Mostrar respuesta

Answer

Que el plano y la recta se cruzan una sola vez.

Show question

Pregunta

Se tiene un sistema de ecuaciones, donde se tiene un plano y una recta, el sistema tiene infinitas soluciones. ¿Esto qué significa?

Mostrar respuesta

Answer

Que la recta vive en el plano.

Show question

Pregunta

Se tiene un sistema de ecuaciones, donde se tiene un plano y una recta, el sistema no tiene ninguna solución. ¿Esto qué significa?

Mostrar respuesta

Answer

Que nunca se cruzan.

Show question

Pregunta

Para calcular el ángulo entre una recta y un plano se requiere usar la función inversa del coseno. ¿Verdadero o falso?

Mostrar respuesta

Answer

Verdadero.

Show question

Pregunta

Escribe la ecuación vectorial de la recta que pasa por el punto \(A(1,5,2)\) y con vector director \(\vec{v}=(2,-4,1)\).

Mostrar respuesta

Answer

\[(x,y,z)=(1,5,2)+t(2,-4,1)\].

Show question

Pregunta

Escribe las ecuaciones paramétricas de la recta que pasa por el punto \(A(3,0,-5)\) y con vector director \(\vec{v}=(5,2,6)\).

Mostrar respuesta

Answer

\[\begin{matrix} x=3+5t \\ y=2t \\ z=-5+6t \end{matrix}\]

Show question

Pregunta

Halla las ecuaciones implícitas de la recta que pasa por el punto \(A(2,0,1)\) con vector director \(\vec{v}=(3,1,-2)\).

Mostrar respuesta

Answer

\[\begin{array} x-3y-2=0\\z+2y-1=0\end{array}\].

Show question

Pregunta

Calcula la ecuación continua de la recta que pasa por el punto \(A(5,-3,7)\) con vector director \(\vec{v}=(0,3,-2)\).

Mostrar respuesta

Answer

\[\dfrac{x-5}{0}=\dfrac{y+3}{3}=\dfrac{z-7}{-2}\].

Show question

Pregunta

¿Cuáles son las cuatro ecuaciones de la recta en el espacio?

Mostrar respuesta

Answer

Ecuación vectorial.

Ecuaciones paramétricas.

Ecuación continua.

Ecuaciones implícitas.

Show question

Pregunta

¿Cuáles son tres características de la recta?

Mostrar respuesta

Answer

  1. Es continua. 
  2. No tiene área ni volumen. 
  3. Puede ser finita o infinita.

Show question

Pregunta

¿Cómo podrías construir las ecuaciones de una recta, si solo conoces las coordenadas de dos puntos que pasan por ella?

Mostrar respuesta

Answer

Si restamos las coordenadas de un punto a las del otro, obtenemos el vector entre estos dos puntos, que sería el vector director de la recta. Con uno de los puntos originales y el vector hallado, podemos escribir las ecuaciones de la recta; por ejemplo, la ecuación vectorial.

Show question

Pregunta

Si solo conoces un punto que pertenece a una recta, ¿puedes escribir las ecuaciones de la recta?

Mostrar respuesta

Answer

No; necesitamos al menos dos puntos, o un punto y el vector director que pertenecen a la recta, para poder escribir sus ecuaciones.

Show question

Pregunta

¿Las siguientes ecuaciones representan una recta en el espacio?

\[\begin{array} x+2z-3y+2=0\\3x+4y-z^2+3=0\end{array}\]

Mostrar respuesta

Answer

No, porque en la segunda ecuación la coordenada \(z\) es cuadrática. En una recta, todas las coordenadas son lineales.

Show question

Pregunta

¿Las siguientes ecuaciones representan una recta?

\[\begin{array}3y+x-13=0\\z=0\end{array}\]

Mostrar respuesta

Answer

Sí, porque hay 2 ecuaciones con 3 coordenadas lineales.

Show question

Pregunta

¿Dónde representan una recta las siguientes ecuaciones?

\[\begin{array}x+2y-3=0\\3y-4x+3=0\end{array}\]

Mostrar respuesta

Answer

Representan una recta en el plano z=0, puesto que no aparece esta coordenada en las ecuaciones.

Show question

Pregunta

¿Las siguientes ecuaciones representan una recta?

\[\begin{array}x+2y-3=0\\2x-y-3=0\end{array}\]

Mostrar respuesta

Answer

Sí; no aparece la coordenada z, pero sigue siendo una recta en el espacio. La recta es paralela al eje z.

Show question

Pregunta

Escribe las ecuaciones implícitas de la recta que pasa por el punto \((1,3,0)\) con vector director \((-2,1,0)\).

Mostrar respuesta

Answer

\[\begin{array}x+2y-7=0\\z=0\end{array}\].

Show question

Pregunta

¿Las siguientes ecuaciones representan una recta?

\[\begin{matrix} x=0 \\ z=0  \end{matrix}\]

Mostrar respuesta

Answer

Sí, la ecuación del eje \(y\).

Show question

Pregunta

Escribe las ecuaciones implícitas del eje \(x\) en el espacio.

Mostrar respuesta

Answer

\[\begin{matrix}y=0\\z=0\end{matrix}\].

Show question

Pregunta

¿Cuántos ángulos se forman entre dos rectas que se cortan en el espacio?

Mostrar respuesta

Answer

Se forman 4 ángulos.

Show question

Pregunta

Cuando dos rectas se cortan en el espacio, ¿cómo són los ángulos que se forman entre ellas?

Mostrar respuesta

Answer

Iguales dos a dos.

Show question

Pregunta

¿Cómo son los dos ángulos distintos que se forman al cortarse dos rectas?

Mostrar respuesta

Answer

Suplementarios.

Show question

Pregunta

¿Qué posiciones relativas pueden tener dos rectas en el espacio?

Mostrar respuesta

Answer

Coincidentes, paralelas, secantes y rectas que se cruzan.

Show question

Pregunta

¿Cómo son los vectores directores de dos rectas paralelas?

Mostrar respuesta

Answer

Los vectores directores de ambas rectas son proporcionales.

Show question

60%

de los usuarios no aprueban el cuestionario de Geometría en el espacio... ¿Lo conseguirás tú?

Empezar cuestionario

Scopri i migliori contenuti per le tue materie

No hay necesidad de copiar si tienes todo lo necesario para triunfar. Todo en una sola app.

Plan de estudios

Siempre preparado y a tiempo con planes de estudio individualizados.

Cuestionarios

Pon a prueba tus conocimientos con cuestionarios entretenidos.

Flashcards

Crea y encuentra fichas de repaso en tiempo récord.

Apuntes

Crea apuntes organizados más rápido que nunca.

Sets de estudio

Todos tus materiales de estudio en un solo lugar.

Documentos

Sube todos los documentos que quieras y guárdalos online.

Análisis de estudio

Identifica cuáles son tus puntos fuertes y débiles a la hora de estudiar.

Objetivos semanales

Fíjate objetivos de estudio y gana puntos al alcanzarlos.

Recordatorios

Deja de procrastinar con nuestros recordatorios de estudio.

Premios

Gana puntos, desbloquea insignias y sube de nivel mientras estudias.

Magic Marker

Cree tarjetas didácticas o flashcards de forma automática.

Formato inteligente

Crea apuntes y resúmenes organizados con nuestras plantillas.

Regístrate para poder subrayar y tomar apuntes. Es 100% gratis.