¿Cómo se integran las funciones trigonométricas al cuadrado?
Para integrar funciones trigonométricas al cuadrado, como \(\sin^2{x}\), puedes utilizar las integrales de las funciones trigonométricas que acabas de determinar, y las identidades angulares dobles.
Por ejemplo, para hallar \(\int{{sin^2{x} \space dx}\), puedes utilizar la identidad \(\cos{2x} = 1 - 2\sin^2{x}\).
Si reordenamos esta expresión para hallar \(\sin^2{x}\), se obtiene \(\sin^2{x} = \frac{1}{2} - \frac {\cos{2x}}{2}\).
\(Comienzo) \int{{cos^2{x}} \dx} &= \frac {1}{2} \int {\cos{2x} + 1} \frac {1}{2}(\frac {\sin{2x}}{2} + x) + c, \text {utilizando la Regla de la Cadena inversa para} \seno {2x} \\ &= \frac {\sin{2x}}{4} + \frac {x}{2} + c fin).
Integrar funciones trigonométricas inversas
Las funciones trigonométricas inversas, como arcsin, arccos y arctan, no pueden integrarse directamente. Por tanto, utilizamos la integración por partes. Sabemos que \(\int{u \space dv} = uv - \int {v \space du}\), y como no podemos integrar la función trigonométrica inversa pero sí derivarla, dejamos que u = función trigonométrica inversa y v = 1. A continuación, se utiliza la fórmula de integración por partes para resolver la integral.
Integral de arcsin(x)
La integral de \(\arcsin{x}\) puede escribirse como \(\int{\arcsin{x}\cdot 1 \space dx}\).
Por tanto, deja que \(u = \arcsin {x}, du = \frac {1}{sqrt{1-x^2}}, dv = 1, v =x\). .
Usamos la fórmula de integración por partes y hallamos el \int {\arcsin{x} \space dx} = x \cdot \arcsin {x} - \int {\frac {x}{\sqrt{1-x^2}}. \space dx}).
Por tanto, \(\int {\arcsin{x} \space dx} = x \cdot \arcsin{x} + \sqrt {1 - x^2} + c\).
Integral de arccos(x)
La integral de \(\arccos{x}\) puede escribirse como \(\int{\arccos{x}\cdot 1 \cdot dx}\). Utilizando la integración por partes, sea \(u = \arccos{x}, du = \frac {-1}{sqrt{1-x^2}}, dv = 1, v = x\) . Utilizando la fórmula de integración por partes, al encontrar que \(\int{\arccos{x} \space dx} = x \cdot \arccos {x} - \int{\frac{-x}{\sqrt{1}-x^2} \dx), o \(x \cdot \arccos{x} + \int{\frac{x}{cuadrado1-x^2} dx). A continuación, utilizamos la integración por sustitución, dejando que \(w = 1 - x^2\).
Siguiendo el mismo método que para la integral de \(\arccosin{x}), encontramos que \(\int{arccos{x} \cdot dx} = x \cdot \arccos{x} - \sqrt{1-x^2} + c\).
Integral de arctan(x)
La integral de arctan(x) puede escribirse como \int {\arctan{x} \cdot 1 \space dx}\). Utilizando la integración por partes, que \(u = \arctan{x}, \space du = \frac{1}{1 + x^2}, \space dv = 1, \space v = x\). Utilizando la fórmula de integración por partes, hallamos que \(\int\arctan{x} \space dx = x \cdot \arctan{x} - \int {\frac{x}{1 + x^2} dx}\). Reconocemos esta integral como un logaritmo natural de \((1 + x^2)\), ya que, dejando que \(w = 1 + x^2\), \(dw = 2x\). Esto significa que el numerador \(x = \frac{1}{2} dw\).
Por tanto, encontramos que \(\int{\arctan{x} \space dx} = x \space \arctan{x} - \frac{1}{2} ln|1 + x^2| + c\).
Dejando que \(u = \cos{x}, \espacio \frac{du}{dx} = -\sin{x}\) . Por tanto, sustituyendo los valores de u por los de x, obtenemos \(\begin{align} \int{u^3(\frac{-du}{dx})dx} &= - \int{u^3du} \ &= - \frac {u^4}{4} +c \end{align}\)
A continuación, sustituimos los valores de u por los de x.
Tabla 1. Integración de funciones trigonométricas.
Integración de funciones trigonométricas - Puntos clave
\(\int{sin{x} \espacio dx} = - \cos{x} + c\)
\(INTENCIÓN DE LOS COSTOS DE LA X EN EL ESPACIO DX = SIN EX + C)
\(Intintestán{x} espacio dx} = n|sec{x}| + c)
Podemos utilizar la regla de la cadena cuando la variable entre paréntesis es más compleja que x, por ejemplo, \(\int{\sin{2x} \space dx = \frac {-1}{2} \cos{2x} + c\), ya que hemos dividido por la derivada de los paréntesis.
Podemos utilizar y reordenar identidades angulares dobles, como \(\cos{2x} = 2 \cos^2{x} - 1\) cuando nos dan una función trigonométrica al cuadrado.
Al calcular integrales de funciones trigonométricas inversas, utilizamos la integración por partes, mediante la fórmula \(int{u \space dv} = uv - \int{v \space du}\), y dejando que u = función trigonométrica inversa, y dv = 1.
Aprende más rápido con las 0 tarjetas sobre Integración de Funciones Trigonométricas
Regístrate gratis para acceder a todas nuestras tarjetas.
Preguntas frecuentes sobre Integración de Funciones Trigonométricas
¿Qué es la integración de funciones trigonométricas?
La integración de funciones trigonométricas es el proceso de hallar la integral de expresiones que contienen funciones como seno, coseno y tangente.
¿Cómo se integra el seno?
Para integrar el seno, ∫sin(x)dx, se obtiene -cos(x) + C.
¿Cuál es la integral de coseno?
La integral de coseno, ∫cos(x)dx, es sin(x) + C.
¿Qué técnicas se utilizan para integrar funciones trigonométricas?
Para integrar funciones trigonométricas, se usan técnicas como sustitución trigonométrica y fracciones parciales.
¿Cómo te aseguras de que tu contenido sea preciso y confiable?
En StudySmarter, has creado una plataforma de aprendizaje que atiende a millones de estudiantes. Conoce a las personas que trabajan arduamente para ofrecer contenido basado en hechos y garantizar que esté verificado.
Proceso de creación de contenido:
Lily Hulatt
Especialista en Contenido Digital
Lily Hulatt es una especialista en contenido digital con más de tres años de experiencia en estrategia de contenido y diseño curricular. Obtuvo su doctorado en Literatura Inglesa en la Universidad de Durham en 2022, enseñó en el Departamento de Estudios Ingleses de la Universidad de Durham y ha contribuido a varias publicaciones. Lily se especializa en Literatura Inglesa, Lengua Inglesa, Historia y Filosofía.
Gabriel Freitas es un ingeniero en inteligencia artificial con una sólida experiencia en desarrollo de software, algoritmos de aprendizaje automático e IA generativa, incluidas aplicaciones de grandes modelos de lenguaje (LLM). Graduado en Ingeniería Eléctrica de la Universidad de São Paulo, actualmente cursa una maestría en Ingeniería Informática en la Universidad de Campinas, especializándose en temas de aprendizaje automático. Gabriel tiene una sólida formación en ingeniería de software y ha trabajado en proyectos que involucran visión por computadora, IA integrada y aplicaciones LLM.
StudySmarter es una compañía de tecnología educativa reconocida a nivel mundial, que ofrece una plataforma de aprendizaje integral diseñada para estudiantes de todas las edades y niveles educativos. Nuestra plataforma proporciona apoyo en el aprendizaje para una amplia gama de asignaturas, incluidas las STEM, Ciencias Sociales e Idiomas, y también ayuda a los estudiantes a dominar con éxito diversos exámenes y pruebas en todo el mundo, como GCSE, A Level, SAT, ACT, Abitur y más. Ofrecemos una extensa biblioteca de materiales de aprendizaje, incluidas tarjetas didácticas interactivas, soluciones completas de libros de texto y explicaciones detalladas. La tecnología avanzada y las herramientas que proporcionamos ayudan a los estudiantes a crear sus propios materiales de aprendizaje. El contenido de StudySmarter no solo es verificado por expertos, sino que también se actualiza regularmente para garantizar su precisión y relevancia.